Патенты автора Алымов Михаил Иванович (RU)

Изобретение относится к области металлургии, а именно к способам термической обработки порошковых магнитотвердых сплавов системы железо-хром-кобальт. Может использоваться при производстве постоянных магнитов. Порошковый магнитотвердый сплав Fe-30Cr-16Co-0,5Sm подвергают гомогенизации при 1300°С в течение 1 часа и закалке от 1300°С. Затем проводят ИТМО при 656°С в течение 23 мин, а двухступенчатый отпуск осуществляют путем охлаждения от 656°С до 580°С со скоростью v1=13,6°С/час и последующего охлаждения от 580°С до 500°С со скоростью v2=4,8°С/час. Обеспечивается повышение магнитных гистерезисных свойств. 4 ил., 2 табл.

Изобретение относится к области космонавтики, в частности к получению тонких пленок тепловой энергией самораспространяющегося высокотемпературного синтеза (СВС), для устранения микротрещин на поверхности корпуса космических летательных аппаратов (КЛА). Устройство содержит камеру 1, на боковой поверхности которой выполнено смотровое окно 21 из прозрачного материала, и основание, цилиндрическую спрессованную СВС-шихту 8, спираль 12 для инициирования СВС синтеза и испаряемый материал 9, при этом камера 1 выполнена цилиндрической и в верхней части содержит герметичную двойную стенку 2 с вакуумным клапаном 4 и гибким шлангом 5, присоединенным к открытому космосу для создания вакуума 10-5-10-6 мм рт.ст. внутри двойной стенки 2, закрытой сверху уплотнителями 3, в нижней части камера 1 снабжена игольчатым клапаном 6 для подачи инертного газа для создания в камере давления 102-103 мм рт.ст. и датчиком давления, подтверждающим наличие микротрещин в стенке КЛА, в средней части камера 1 содержит вакуумный клапан 16 с гибким шлангом 17, обеспечивающим вакуум 10-5-10-6 мм рт.ст. в камере 1 устройства при подключении к открытому космосу, СВС-шихта 8 установлена на теплоизоляторе 22, размещенном на основании камеры 1, и выполнена в виде таблетки, в торце которой высверлено отверстие в форме «ложечки», в которое засыпан порошок испаряемого материала 9, устройство дополнительно снабжено экраном 10 с отверстием для создания направленного потока частиц испаряемого материала 9, установленного на основании вокруг теплоизолятора 22 с СВС-шихтой, а также заслонкой 14 для перекрытия вышеупомянутого потока. Устройство работает следующим образом. В прессованную в виде таблетки СВС-шихту 8, в торце которой высверлено отверстие в форме «ложечки», засыпается порошок испаряемого материала 9. Прессованная СВС-шихта 8 крепится с помощью держателя к основанию камеры 1. Между СВС-шихтой 8 и корпусом 1 устройства ставится теплоизолятор 22. Устройство присоединяется к стенке космического аппарата в область микротрещин за счет создания высокого вакуума 10-5-10-6 мм рт.ст. в двойной стенке 2 камеры, закрытой сверху уплотнителями 3, путем присоединения вакуумного клапана 4 с гибким вакуумным шлангом 5, к открытому космосу. Затем открывается игольчатый клапан 6, в камеру подают инертный газ и создают давление 102-103 мм рт.ст. Давление внутри устройства измеряется с помощью датчика моновакуумметрического давления 7. Уменьшение давления в камере устройства подтверждает наличие микротрещин в стенках корпуса КЛА, а их отсутствие подтверждается постоянным давлением в камере 1. Изобретение позволяет определить наличие образованных в стенках КЛА микротрещин в условиях космического вакуума и устранить их тепловой энергией СВС путем получения потока частиц испаряемого металла или соединений, образующих твердый раствор с материалами стенок КЛА. 2 н.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к области получения широковостребованных мономеров для производства синтетических каучуков и, более конкретно, к способу получения α-метилстирола путем дегидрирования кумола. Предложен способ получения пористого керамического каталитического конвертера путем самораспространяющегося высокотемпературного синтеза из алюмосодержащей шихты, содержащей мас.%: α-Аl2О3 - 85-95; MgO - 1-5; SiC - 5-9, с формованием пористой керамической трубки, в котором на поверхности трубки золь-гель методом формируют дополнительный промежуточный слой γ-Аl2О3, после чего наносят каталитически активные компоненты, последовательно пропитывая поверхность трубки водными растворами карбоната калия и нитрата церия, а затем раздельно наносят водно-спиртовые растворы комплексов NBu4ReO4 и (NH4)6W12O39⋅H2O, и прокаливают трубку в токе воздуха ступенчато увеличивая температуру с получением каталитического конвертера дегидрирования этилбензола в α-метилстирол. Предложен также способ получения α-метилстирола дегидрированием кумола в присутствии полученного каталитического конвертера путем смешивания паров кумола с парами воды в соотношении 1:12-16, и дегидрирование ее осуществляют при температуре 575-625°С и объемной скорости подачи смеси 1,2-1,6 ч-1. Технический результат - увеличение производительности получения α-метилстирола в процессе дегидрирования кумола в единицу времени в расчете на грамм катализатора до 7,4 г/ч*гакт.комп, что в ~ 25 раз большей, чем в традиционных, используемых в промышленности реакторах, при меньших затратах на объемы подаваемой воды и загрузку используемого катализатора, уменьшение степени зауглероженности конвертера за 6 часов работы не более 5 мас.%. 2 н.п. ф-лы, 4 табл., 1 ил., 21 пр.

Изобретение относится к области получения широко востребованных мономеров для производства синтетических каучуков, и более конкретно к способу получения стирола путем дегидрирования этилбензола. Предложен способ получения пористого керамического каталитического конвертера путем самораспространяющегося высокотемпературного синтеза из алюмосодержащей шихты, содержащей мас.%: α-Al2O3 - 85-95; MgO - 1-5; SiC - 5-9, с формованием пористой керамической трубки, в котором на поверхности трубки золь-гель методом формируют дополнительный промежуточный слой γ-Al2O3, после чего наносят каталитически активные компоненты, последовательно пропитывая поверхность трубки водными растворами карбоната калия и нитрата церия, а затем раздельно наносят водно-спиртовые растворы комплексов NBu4ReO4 и (NH4)6W12O39⋅H2O, и прокаливают трубку в токе воздуха ступенчато увеличивая температуру с получением каталитического конвертера дегидрирования этилбензола в стирол. Предложен также способ получения стирола дегидрированием этилбензола в присутствии полученного каталитического конвертера, путем смешивания паров этилбензола с парами воды в соотношении 1:12-16. Дегидрирование осуществляют при температуре 575-625°С и объемной скорости подачи смеси 1,2-1,6 ч-1. Технический результат - увеличение производительности получения стирола в процессе дегидрирования этилбензола в единицу времени в расчете на грамм катализатора до 7,23 г/ч*гакт.комп., что в ~23 раза большей, чем в традиционных, используемых в промышленности реакторах, при меньших затратах на объемы подаваемой воды и загрузку используемого катализатора, уменьшение степени зауглероженности конвертера за 6 часов работы не более 5 мас.%. 2 н.п. ф-лы, 1 ил., 4 табл., 22 пр.

Изобретение относится к области порошковой металлургии, в частности к аддитивным технологиям и селективному лазерному спеканию при получении изделий из металлических и керамических порошков. Изобретение может быть использовано для измерения давления газа внутри закрытых пор в порошковых прессовках, литых или полученных по аддитивной технологии заготовках, применяемых в авиационной промышленности и двигателестроении. Cпособ измерения давления газа внутри замкнутого объема (полого шара) включает приложение внешнего сжимающего или растягивающего давления на полый шар, измерение внешнего диаметра шара до и после приложения давления и расчет внутреннего давления газа внутри полого шара по формуле: , где р1 - давление газа внутри замкнутого объема (полого шара); Δp1 - изменение давления газа внутри полого шара после приложения внешнего давления p2, вычисляется по формуле: , R12 - внутренний радиус полости шара при приложении внешнего давления р2, вычисляется по формуле: R12=R1+A⋅Δр1-В⋅р2, R1 - внутренний радиус сферы (радиус поры) при начальном давлении р1, вычисляется через объем, массу и плотность полого шара; R2 - наружный радиус полого шара при начальном давлении р1, измеряется напрямую; R22 - наружный радиус полости шара при приложении внешнего давления р2, измеряется напрямую; А - константа, вычисляется по формуле: , В - константа, вычисляется по формуле: , С - константа, вычисляется по формуле: D - константа, вычисляется по формуле: , Е - модуль упругости; ν - коэффициент Пуассона. Технический результат - возможность проведения неразрушающего измерения статического давления газа внутри замкнутого сосуда, в частности поры, имеющей малый размер. 1 ил.
Изобретение относится к порошковой металлургии, в частности к получению длинномерных цилиндрических стержней из материалов на основе Ti-Al-C. Может быть использовано для получения электродных материалов при электролизе цветных металлов. Способ включает предварительное перемешивание исходных компонентов смеси порошков титана, алюминия и сажи в молярном соотношении 3Ti-xAl-2C, где 1≤х≤2,5, и прессование исходной смеси в цилиндрическую заготовку. Осуществляют нагрев заготовки до температуры 50-300°C и инициируют реакцию самораспространяющегося высокотемпературного синтеза, после чего проводят пластическое деформирование синтезированного материала через формующую матрицу с углом конусной части матрицы 120-180° при скорости перемещения плунжера пресса 60-100 мм/с. Способ обеспечивает получение материалов с заданным составом, позволяет упростить технологический процесс и увеличить производительность. 2 з.п. ф-лы, 7 пр.

Изобретение относится к получению порошковых магнитотвердых сплавов. Способ получения порошкового магнитотвердого сплава 30Х20К2М2В системы железо-хром-кобальт включает приготовление шихты из порошков железа, хрома, кобальта, молибдена и вольфрама, формование полученной шихты, спекание, термообработку и термомагнитную обработку. Причем после спекания до термообработки проводят горячую пластическую деформацию с вытяжкой не менее 1,1. Термомагнитную обработку проводят в температурном интервале 650-600°С. Обеспечивается снижение температуры спекания сплава и повышение магнитных гистерезисных свойств слава при сохранении высоких значений коэрцитивной силы. 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к термической обработке магнитотвердых сплавов системы железо-хром-кобальт, используемых при производстве постоянных магнитов. Способ термической обработки магнитотвердых сплавов системы железо-хром-кобальт с содержанием кобальта 8 вес. % включает гомогенизацию, закалку, термомагнитную обработку с последующим многоступенчатым отпуском, при этом отпуск на последней ступени проводят при температуре 420°С. Повышаются значения магнитных гистерезисных свойств, в том числе коэрцитивной силы HcB и максимального энергетического произведения (ВН)макс. 1 табл.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов на основе системы железо-хром-кобальт. Готовят шихту, содержащую порошки железа, хрома, кобальта и легирующих элементов, и проводят ее механоактивацию в планетарной шаровой мельнице в среде этилового спирта в течение 2-15 минут, с последующей сушкой. Полученную шихту формуют, спекают и подвергают термообработке, в т.ч. термомагнитной. Обеспечивается снижение времени и температуры спекания. 2 з.п. ф-лы, 2 табл., 2 пр.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением заготовки. После чего проводят спекание и термообработку, включая термомагнитную обработку. Обеспечивается уменьшение времени и температуры спекания. 1 табл.
Изобретение относится к порошковой металлургии и может использоваться для изготовления длинномерных изделий из металлических нанопорошков

 


Наверх