Способ получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт


 


Владельцы патента RU 2533068:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт. Шихту, содержащую порошки железа, хрома, кобальта, легирующие добавки и до 15 мас.% нанопорошков железа, хрома и кобальта, формуют с получением заготовки. После чего проводят спекание и термообработку, включая термомагнитную обработку. Обеспечивается уменьшение времени и температуры спекания. 1 табл.

 

Изобретение относится к области порошковой металлургии в части технологии получения постоянных магнитов из магнитотвердых сплавов системы железо-хром-кобальт методами порошковой металлургии.

Известны способы получения магнитотвердых сплавов системы железо-хром-кобальт методами порошковой металлургии, включающими смешение порошков железа, хрома, кобальта и легирующих добавок, формование для получения порошковых заготовок постоянных магнитов, их спекание в вакууме (или в защитной атмосфере) при температурах 1350-1420°С, термическую обработку, включая термомагнитную, для получения окончательных магнитных гистерезисных свойств.

Способ патента США №4401482 (1983 г.) "Fe-Cr-Co magnets by powder metallurgy processing" включает использование органических связующих определенного класса (поверхностно-активные вещества) в количестве 1-3%, которые затем удаляются при температурах до 600°С в процессе спекания отформованных заготовок. Недостатком этого способа получения порошковых магнитотвердых материалов системы Fe-Cr-Co является само использование органических связующих добавок, которые при использовании механоактивации порошков шихты загрязняют сплав углеродом, являющимся сильным γ-образующим элементом, приводящим к резкому уменьшению остаточной индукции и максимального энергетического произведения магнитотвердых FeCrCo сплавов.

Известен патент Российской Федерации №2334589 С2 (2008 г.) «Способ изготовления магнитов из порошковых материалов на основе системы железо-хром-кобальт», который основан на использовании порошков ферросплавов легирующих элементов (ферросилиция и ферромолибдена), обеспечивающих жидкофазное спекание и тем самым повышающих плотность получаемых постоянных магнитов. К сожалению, этот способ изготовления магнитов из порошковых материалов на основе системы железо-хром-кобальт не обеспечивает снижения температуры спекания отформованных порошковых заготовок и тем самым не позволяет снизить энергозатраты на производство постоянных магнитов.

Технология получения постоянных магнитов из порошковых магнитотвердых сплавов системы Fe-Cr-Co, подробно описанная в статье M.L. Green, R.C. Sherwood and С.С. Wong "Powder metallurgy processing of CrCoFe permanent magnet alloy containing 5-25 wt. % Co" (J. Appl. Phys. 1982, v. 53, №3, pp.2398-2400), свидетельствует, что оптимальной температурой спекания является температура 1400-1420°С, которая достаточно высока для спекания металлических сплавов и требует наличия специализированного оборудования.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является способ получения спеченных порошковых магнитотвердых FeCrCo сплавов патента США №4601876 (1986 г.) "Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof, сущность которого состоит в том, что для интенсификации процесса спекания проводят мехактивацию как исходных порошков шихты, так и порошков сплавов прекурсоров, вводимых в шихту. К недостаткам этого способа получения порошковых постоянных магнитов следует отнести необходимость использования порошков прекурсоров высокохромистых и высококобальтовых FeCrCo сплавов, обработанных на сигму-фазу, что существенно усложняет весь технологический процесс получения порошковых магнитов.

Задачей, на решение которой направлено настоящее изобретение, заключается в создании способа получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт.

Техническим результатом изобретения является снижение времени и температуры спекания.

Технический результат изобретения достигается тем, что в способе получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт, включающем приготовление шихты, содержащей порошки железа, хрома, кобальта и легирующих элементов, формование полученной шихты, спекание, термообработку, включая термомагнитную, согласно изобретению в состав используемой шихты вводят нанодисперсные порошки железа, хрома и/или кобальта в количестве до 15 масс.%.

Сущность настоящего изобретения заключается в том, что аналогичная интенсификация процесса спекания FeCrCo сплавов достигается путем введения в исходную порошковую шихту нанопорошков железа, кобальта и/или хрома в количестве до 15 масс.%. При введении нанопорошков не только снижается время спекания в 1,5-2 раза, но и снижается оптимальная температура спекания на 100-150°С за счет более развитой поверхности спекаемых порошков. В таблице 1 представлены магнитные гистерезисные свойства порошкового магнитотвердого сплава Fe-22Cr-15Co-1Ti (22Х15КА по ГОСТ 24897-81) в зависимости от содержания нанопорошка в исходной порошковой шихте, времени и температуры спекания. Из таблицы 1 видно, что введение нанопорошков исходных элементов шихты в количестве более 15 масс.% не приводит к дальнейшему снижению температуры и времени спекания, а приводит только к удорожанию производимой продукции.

Таблица 1
Содержание нанопорошка в исходной порошковой шихте Температура и время спекания Остаточная индукция Br, Тл Коэрцитивная сила HcB, кА/м Макс. энерг. произведение (ВН)макс, кДж/м3
0 масс.% 1400°С (3 часа) 1,38 49,5 37,8
1430°С (4 часа) 1,35 39,6 25,7
1370°С (4 часа) 1,06 40,9 19,5
5 масс.% 1400°С (3 часа) 1,36 46,2 35,0
1400°С (2 часа) 1,37 49,6 38,0
1370°С (4 часа) 1,30 44,0 30,0
10 масс.% 1400°С (2 часа) 1,36 48,0 36,0
1370°С (2 часа) 1,39 49,0 38,7
1350°С (4 часа) 1,32 43,5 32,6
1320°С (4 часа) 1,30 40,3 29,0
15 масс.% 1370°С (2 часа) 1,39 47,0 37,5
1350°С (4 часа) 1,40 48,3 40,2
1350°С (2 часа) 1,41 48,8 41,2
1300°С (4 часа) 1,42 48,6 43,4
1300°С (2 часа) 1,44 48,4 45,0
1270°С (4 часа) 1,35 44,2 36,0
20 масс.% 1300°С (2 часа) 1,45 48,0 44,9
1270°С (6 часов) 1,36 45,2 37,4
1270°С (4 часа) 1,34 44,4 36,0

Способ получения порошковых магнитотвердых сплавов на основе системы железо-хром-кобальт, включающий приготовление исходной порошковой шихты, содержащей железо, хром, кобальт и легирующие элементы, формование полученной шихты, спекание, термообработку, включая термомагнитную, отличающийся тем, что при приготовлении исходной шихты вводят нанодисперсные порошки железа, хрома и кобальта в количестве до 15 мас.%.



 

Похожие патенты:

Изобретение относится к химии высокомолекулярных соединений, а именно касается сверхвысокомолекулярного полиэтилена (СВМПЭ), модифицированного наноразмерными частицами оксида тантала.

Изобретение относится к нанесению покрытий путем проведения неравновесных процессов распыления в вакууме ионным пучком. Может использоваться для создания автоэмиссионных катодов, упрочнения рабочих кромок режущего инструмента, в частности хирургического, защиты от химически агрессивных сред и повышенных температур, требующих химической инертности и биосовместимости покрытий, высокой твердости и низкого трения, высокой теплопроводности покрытий.

Изобретение относится к способам изготовления фотовольтаических ячеек и может быть использовано в солнечных батареях. Предложенный способ основан на поэтапном изготовлении сенсибилизирующего слоя на основе нанокомпозитной гибридной структуры, содержащей мезопористый TiO2, полупроводниковые квантовые точки и органический краситель, и заключается в том, что для уменьшения толщины слоя КТ, адсорбированных на поверхность TiO2, вводится технологический этап предварительного удаления избыточного количества молекул солюбилизатора полупроводниковых квантовых точек из раствора и частично с поверхности квантовых точек.
Изобретение относится к области химии высокомолекулярных соединений, в частности к способам получения полимерных носителей путем химической модификации исходных полимерных микросфер на основе сополимера акролеина-стирола, полученных безэмульгаторной радикальной полимеризацией.

Изобретение может быть использовано в космической технике, строительстве, в химической, пищевой и легкой промышленности. Пигмент для светоотражающих покрытий содержит смесь частиц диоксида циркония со средним размером 3 мкм и наночастицы диоксида циркония размером 30-40 нм.
Изобретение относится к технологии получения наноразмерных пленок мультиферроиков и может найти применение в производстве высокодобротных магнитооптических устройств обработки и хранения информации, магнитных сенсоров, емкостных электромагнитов, магнитоэлектрических элементов памяти, невзаимных сверхвысокочастотных фильтров.
Изобретение относится к технологии получения пленок ферритов-гранатов и может быть использовано в прикладной магнитооптике для получения магнитооптических дисков, модуляторов, дефлекторов.

Предлагаемое изобретение относится к порошковой металлургии и может быть использовано для формования изделий как методом литья термопластичного шликера, так и методом прямого формования инжектированием через форсунки.
Группа изобретений может быть использована в производстве катализаторов, в частности, для селективного восстановления NOx. Каталитическая композиция содержит по меньшей мере один оксид на носителе, состоящий из оксида циркония, или оксида титана, или смешанного оксида циркония и титана, или из оксида циркония и оксида по меньшей мере одного оксида другого элемента, выбранного из празеодима, лантана, неодима и иттрия, нанесенный на носитель на основе оксида кремния.

Изобретение относится к области плазмохимии и может быть использовано для производства фуллеренов и нанотрубок. Углеродосодержащее сырье разлагают в газовом разряде, для чего сначала зажигают объемный тлеющий разряд в смеси газообразных углеводородов и инертного газа при давлении 20-80 Торр.

Изобретение относится к порошковой металлургии, в частности к получению изделий на основе железа, пригодных для обработки резанием. Порошковая композиция на основе железа содержит порошок на основе железа и улучшающую обрабатываемость резанием добавку, содержащую по меньшей мере один силикат из группы глинистых минералов.

Изобретение относится к порошковой металлургии, в частности к способу изготовления электрода для поверхностной обработки разрядом. Состав, включающий электропроводный смешанный материал с размером частиц менее 5 мкм, содержащий первый порошок, полученный с помощью по меньшей мере любого процесса, выбранного из группы, состоящей из метода распыления, метода восстановления и карбонильного метода, и второй порошок, полученный методом измельчения, и связующее, причем электропроводный смешанный материал содержит второй порошок с долей 10-65 вес.%, подвергают инжекционному формованию с получением сырой заготовки.

Изобретение относится к порошковой металлургии, в частности к получения спеченных твердосплавных деталей из градиентных твердых сплавов. Может использоваться для изготовления режущих вставок инструмента для машинообработки металла, горного инструмента или инструмента для холодной штамповки.

Изобретение относится к огнестойким строительным плитам и способу их производства, а именно к огнестойким плитам из ваты, полученной путем переплетения тонких металлических нитей из ненужных консервных банок, жести, железа, цветных металлов и т.д.

Изобретение относится к порошковой металлургии, в частности к получению ферромагнитной порошковой композиции. Может использоваться в качестве сердечника в катушках индуктивности, статорах и роторах электрических машин, силовых приводах, датчиках и сердечниках трансформаторов.

Изобретение относится к порошковой металлургии, в частности к изготовлению прирабатываемых уплотнений турбомашин. Может использоваться в машиностроении, в частности в качестве уплотнений зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.
Изобретение относится к порошковой металлургии, в частности к получению термостабильных редкоземельных магнитов. Магниты могут использоваться в системах автоматики, промышленном оборудовании, автомобилях.
Изобретение относится к порошковой металлургии, в частности к получению спеченных изделий на основе железа из порошковой композиции, содержащей распыленный водой предварительно легированный стальной порошок.
Изобретение относится к порошковой металлургии, в частности к получению спеченных деталей из порошковой композиции на основе распыленного водой порошка на основе железа.

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь и может быть использовано для нанесения такого покрытия на внутренние стенки полостей лопатки газотурбинного двигателя путем осаждения из паровой фазы.
Изобретение относится к порошковой металлургии, в частности к получению постоянных магнитов из магнитотвердых сплавов на основе системы железо-хром-кобальт. Готовят шихту, содержащую порошки железа, хрома, кобальта и легирующих элементов, и проводят ее механоактивацию в планетарной шаровой мельнице в среде этилового спирта в течение 2-15 минут, с последующей сушкой. Полученную шихту формуют, спекают и подвергают термообработке, в т.ч. термомагнитной. Обеспечивается снижение времени и температуры спекания. 2 з.п. ф-лы, 2 табл., 2 пр.
Наверх