Патенты автора Гусев Александр Сергеевич (RU)

Использование: для наружной диагностики технологических трубопроводов, перемычек и участков трубопроводов, не подлежащих внутритрубной диагностике, а также для контроля сварных швов при строительстве и ремонте участков трубопроводов. Сущность изобретения заключается в том, что за счет автоматизации процесса диагностики трубопровода и использования жесткой механической конструкции с лазерной и ультразвуковой измерительными системами возможно без дополнительных операций по переустановке и позиционированию диагностического комплекса осуществлять измерение внешней геометрии трубопровода и выполнять неразрушающий контроль наружной поверхности, основного металла трубопровода, сварных швов и околошовной зоны, производить обработку полученной диагностической, координатной и телеметрической информации от ультразвуковой и лазерной измерительных систем, энкодеров, оптических датчиков слежения, и с помощью оператора определять тип, положение и геометрические параметры наружных, внутренних и внутристенных дефектов в режиме реального времени. Технический результат: повышение точности определения местоположения и измерения геометрических параметров дефектов основного металла трубопровода, продольных, поперечных, спиральных сварных швов и околошовной зоны. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к медицине, а именно к контейнерам для обеззараживания использованных средств индивидуальной защиты. Контейнер состоит из полого корпуса, имеющего две боковые, переднюю (5) и заднюю (4) стенки, а также верхнюю (6) и нижнюю (15) стенки. В передней стенке выполнено загрузочное отверстие и установлена дверь (12) для доступа к емкости (10) для накопления использованных средств индивидуальной защиты. Загрузочное отверстие расположено под козырьком (7), выполненным как продолжение верхней стенки корпуса контейнера. На передней стенке с внутренней стороны корпуса выполнена полка (9), имеющая наклон внутрь и вниз. Под наклонной полкой установлено устройство для крепления накопительных емкостей. Дверь снабжена замком. Достигается возможность собирать и обеззараживать использованные средства индивидуальной защиты. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области обработки данных и может быть использовано для моделирования передачи постоянного тока в энергетической системе. Техническим результатом является обеспечение воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов передачи постоянного тока и функционирования конструктивных элементов системы. Устройство содержит центральный процессор, процессор коммутации, процессор аналого-цифрового преобразования, блок многоканального аналого-цифрового преобразования, блок моделирования первой стороны передачи постоянного тока, блок моделирования второй стороны передачи постоянного тока, блок моделирования линий постоянного тока. 11 ил.

Изобретение относится к области обработки данных, а именно к моделирующим устройствам, и может быть использовано при моделировании фазоповоротного устройства и его конструктивных элементов в составе энергетических систем. Техническим результатом является обеспечение в реальном времени воспроизведения процессов функционирования фазоповоротного устройства и его конструктивных элементов в нормальных, аварийных и послеаварийных режимах. Устройство содержит центральный процессор, процессор коммутации, процессор аналого-цифрового преобразования, блок многоканального аналого-цифрового преобразования, блоки моделирования продольно-поперечных коммутаций, блок моделирования шунтового трансформатора, блок моделирования сериесного трансформатора, блоки моделирования реакторов и блок моделирования тиристорного коммутатора. 5 ил.

Изобретение относится к области ускорительной техники, в частности к системам подачи газа в сверхзвуковое сопло при формировании пучков ускоренных газовых кластерных ионов. Технический результат - расширение класса рабочих газов, в том числе слабо кластеризуемых, используемых в системах для формирования газовых кластерных ионных пучков. Способ предусматривает формирование газового кластерного ионного пучка в вакуумной камере при подаче рабочего газа под давлением от источника газа в сверхзвуковое сопло ускорителя газовых кластерных ионов, при этом формирование газового кластерного ионного пучка осуществляется путем импульсной подачи газа от источника, при значении давления стагнации, не превышающем 7 атм, и при длительности импульса тока кластерных ионов, на 1-2 порядка превышающей длительность подачи газа от источника. 4 ил., 1 табл.

Изобретение относится к способу финишной планаризации поверхности оптической стеклокерамики. Обработку поверхности оптической стеклокерамики проводят в две стадии. На первой стадии осуществляется обработка поверхности оптической стеклокерамики пучками ускоренных кластерных ионов аргона. Далее на второй стадии проводится обработка пучками ускоренных нейтральных атомов аргона. При этом ускоряющее напряжение на обеих стадиях обработки находится в диапазоне 10-30 кВ, время обработки на каждой из стадий устанавливается не более 15 минут, при давлении остаточных газов не более 4×10-2 Па. Технический результат – упрощение технологического процесса планаризации поверхности при одновременном снижении среднеквадратичной шероховатости поверхности оптической стеклокерамики на 30% относительно их исходного состояния. 2 табл., 2 ил.

Изобретение относится к области моделирования электроэнергетических систем. Технический результат - воспроизведение единого непрерывного спектра квазиустановившихся и переходных процессов в оборудовании и электроэнергетической системе и формирование решений-рекомендаций для диспетчера по эффективному и оптимальному управлению их состоянием при разных режимах работы. Для этого предложен комплекс поддержки принятия решений диспетчерским персоналом электроэнергетических систем, который содержит модуль сервера, который соединен с модулем принятия решений, автоматизированным рабочим местом диспетчера, оперативно-информационным комплексом и модулем линейной связи, который соединен с модулями электрической машины, количество которых соответствует количеству электрических машин, с модулями линии электропередач, количество которых соответствует количеству линий электропередач, с модулями трансформатора, количество которых соответствует количеству трансформаторов, с модулями нагрузки, количество которых соответствует количеству нагрузок, и с модулем коммутатора. Все модули электрической машины, модули линии электропередач, модули трансформатора и модули нагрузки соединены с модулем коммутатора. 7 ил.

Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д. Проводят импульсное лазерное распыление керамической мишени AlN стехиометрического состава с помощью эксимерного лазера KrF с длиной волны излучения 248 нм. Обработку выполняют в вакууме при остаточном давлении 10-5 - 10-6 Па, длительности импульса 10-50 нс и частоте следования импульсов 15-45 Гц в диапазоне температур подложки 700-850°С. Технический результат изобретения заключается в упрощении технологического процесса синтеза нанопроволок AlN на полупроводниковой подложке методом импульсного лазерного осаждения. 4 ил.

Изобретение относится к области моделирования объектов энергетических систем. Технический результат заключается в обеспечении воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов функционирования вставки постоянного тока и ее конструктивных элементов, а также управление, в том числе функциональное, их параметрами. Устройство состоит из центрального процессора, процессора коммутации, процессора аналого-цифрового преобразования, блока многоканального аналого-цифрового преобразования, блока моделирования первой стороны переменного тока вставки постоянного тока, блока моделирования второй стороны переменного тока вставки постоянного тока, блока моделирования цепи постоянного тока. Блоки моделирования первой и второй сторон переменного тока вставки постоянного тока выполнены одинаково, и каждый содержит блок моделирования трансформатора, блок моделирования реакторов, блок моделирования фильтра, блок моделирования статического преобразователя напряжения, блок цифроуправляемой продольной коммутации. 1 з.п. ф-лы, 9 ил.

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов видимого диапазона с длиной волны 460±5 нм. Указанный синий флип-чип светодиод на нитридных гетероструктурах содержит металлические электроды p-типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, подложку из карбида кремния с текстурированной полуполярной или неполярной поверхностью, выполненной в виде нанообразований, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. 5 з.п. ф-лы, 1 ил.

Изобретение относится к твердотельной электронике, в частности к технологии изготовления высоковольтных карбидокремниевых полупроводниковых приборов на основе p-n-перехода с использованием ионной имплантации. Технический результат, достигаемый при реализации заявленного изобретения, заключается в получении высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур с напряжением пробоя ~1200 В. В способе формирования высоковольтного карбидокремниевого диода на основе ионно-легированных p-n-структур на сильнолегированную подложку 6H-SiC наносят методом химического осаждения из газовой фазы слаболегированный эпитаксиальный слой толщиной 10÷15 мкм, после чего проводят ионное легирование этого слоя акцепторной примесью А1 или В с энергией 80÷100 кэВ и дозой 5000÷7000 мкКл/см2, что позволяет максимально увеличить ширину области пространственного заряда p-n-перехода (w~10 мкм), при которой в приповерхностном p-слое не возникает инверсии носителей заряда, при этом достигается величина напряжения пробоя p-n-перехода ~1200 В. 1 ил.

Изобретение относится к технологии микроэлектроники и может быть использовано для получения слоев карбида кремния при изготовлении микроэлектромеханических устройств, фотопреобразователей с широкозонным окном 3С-SiC, ИК-микроизлучателей. Способ получения тонких эпитаксиальных слоев β-SiC на кремнии монокристаллическом включает распыление керамической мишени SiC путем сканирования по ее поверхности лазерным лучом в условиях высокого вакуума без добавок газообразных реагентов на нагретую подложку. Распыление осуществляют лазером с длиной волны излучения λ=1,06 мкм и выходной энергией излучения 0,1÷0,3 Дж при остаточном давлении в ростовой камере 10-4-10-6 Па и при температуре подложки 950÷1000°C. Обеспечивается получение эпитаксиальных слоев карбида кремния кубической модификации (β-SiC) на подложках кремния монокристаллического (Si) кристаллографической ориентации (111) и (100). 4 ил.

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в объединенном регуляторе потока мощности в специализированных многопроцессорных программно-технических системах гибридного типа, предназначенных для всережимного моделирования в реальном времени электроэнергетических систем. Техническим результатом является обеспечение моделирования регулятора с изменяемыми параметрами. Устройство содержит вычислительный блок конденсаторных батарей, блок многоканального аналого-цифрового преобразования, блок микропроцессоров, преобразователь напряжение-ток, два идентичных блока трансформации и преобразования напряжения, каждый из которых содержит вычислительный блок трансформатора, три блока преобразователей напряжение-ток, два блока цифроуправляемой поперечной коммутации, два блока цифроуправляемой продольной коммутации, блок статического преобразователя напряжения. 4 ил.

Изобретение относится к области моделирования объектов электрических систем. Техническим результатом является обеспечение всережимного моделирования в реальном времени и на неограниченном интервале процессов, протекающих в статическом синхронном компенсаторе. Устройство для моделирования статического синхронного компенсатора содержит блок микропроцессоров, подключенный к блоку моделирования реакторов, блоку цифроуправляемой продольной коммутации, блокам цифроуправляемой поперечной коммутации, блоку моделирования статического преобразователя напряжения, блоку моделирования цепи постоянного тока, блоку моделирования фильтра, к блоку многоканального аналого-цифрового преобразования. Блок моделирования реакторов соединен с преобразователями напряжение-ток, с блоком моделирования фильтра. Первый, второй и третий преобразователи напряжение-ток соединены с первым блоком цифроуправляемой поперечной коммутации и с блоком цифроуправляемой продольной коммутации. Четвертый, пятый и шестой преобразователи напряжение-ток соединены со вторым блоком цифроуправляемой поперечной коммутации и с блоком моделирования статического преобразователя напряжения, который соединен с блоком моделирования цепи постоянного тока и с седьмым, восьмым и девятым преобразователями напряжение-ток. 5 ил.

Изобретение относится к моделированию трансформатора

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения в реальном времени непрерывного спектра нормальных и анормальных процессов в трехфазной линии электропередачи с распределенными параметрами в специализированных многопроцессорных программно-технических системах гибридного типа, предназначенных для всережимного моделирования в реальном времени электроэнергетических систем

Изобретение относится к области моделирования объектов электрических систем и может быть использовано для воспроизведения реального непрерывного спектра нормальных и анормальных процессов в трехфазной линии электропередачи с сосредоточенными параметрами в специализированных многопроцессорных программно-технических системах гибридного типа, предназначенных для всережимного моделирования в реальном времени электроэнергетических систем

Изобретение относится к технологии оптоэлектроники и может быть использовано для получения полифункциональных пленочных инвертированных фотонных кристаллов с запрещенной зоной в видимой и ИК-области спектра, и пригоден для производства оптоэлектронных (электрооптических и магнитооптических) приборов на основе инвертированных фотонных кристаллов

Изобретение относится к технологии оптоэлектронных приборов и может быть использовано для получения люминесцентных фотонно-кристаллических средств отображения информации с контролируемой направленностью излучения

Изобретение относится к способу получения тонких пленок карбида кремния методом вакуумной лазерной абляции и может быть использовано для получения тонкопленочных покрытий и активных слоев тонкопленочных приемников УФ-излучения в микроэлектронике

 


Наверх