Патенты автора Колмаков Алексей Георгиевич (RU)

Изобретение относится к технологии получения поликристаллической керамики на основе оксинитрида алюминия с достаточной степенью прозрачности в оптическом диапазоне, которая может быть использована в производстве защитных устройств, электронике и других областях техники. Техническим результатом заявленного изобретения является упрощение получения поликристаллической керамики и изделий на нее с относительной плотностью выше 98%, прочностью порядка 170-220 МПа и твердостью в диапазоне 1700-1800 HV. Данный способ спекания осуществляется за один этап термической обработки, включающий в себя нагрев и выдержку при заданной температуре. Смесь исходных порошков Al2O3, AlN в соотношении, близком к области эвтектоидного превращения, и спекающей добавки Y2O3 в количестве 0,5 мас.% прессуют в одноосном прессе с усилием 30-80 МПа. На следующем этапе происходит спекание по реакционному механизму при температуре 1670-1800°С в атмосфере газообразного азота с выдержкой от 5 до 8 часов. 1 пр.
Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, пропитанного расплавом матричного сплава алюминия. Проводят вакуумную дегазацию пористой углеграфитовой заготовки в течение 5-7 мин. Наносят на нее гальваническое покрытие, выполненное из последовательно нанесенных внутреннего никелевого, промежуточного цинкового и наружного медного слоев. Заполняют камеру для пропитки расплавом матричного сплава алюминия. Размещают углеграфитовую заготовку с нанесенным гальваническим покрытием в заполненной камере для пропитки и осуществляют пропитку пористой заготовки расплавом матричного сплава алюминия под воздействием избыточного давления за счет термического расширения расплава при нагреве не менее чем на 100оС выше температуры ликвидус расплава матричного сплава алюминия. Вакуумную дегазацию проводят в водном растворе никелевого электролита, содержащего 140 г/л сульфата никеля, 50 г/л сульфата натрия, 30 г/л сульфата магния и 20 г/л сухой борной кислоты. Заполнение упомянутой камеры расплавом матричного сплава алюминия осуществляют на 2/3 и выдерживают при температуре на 15-20°С ниже температуры ликвидус матричного сплава алюминия. Обеспечивается повышение качества композиционных материалов. 1 табл.

Изобретение относится к металлургии, в частности к способам изготовления проволоки TiNbTa из биосовместимого сплава для производства сферического порошка. Способ получения проволоки из сплава титан-ниобий-тантал для производства сферического порошка включает выплавку слитков сплава из исходных материалов в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизирующий отжиг слитков в вакууме 5⋅10-5 мм рт.ст., интенсивную пластическую деформацию слитков с получением проволоки и рекристаллизационный отжиг полученной проволоки. Гомогенизирующий отжиг слитков осуществляют при температуре 600°С в течение 12 ч, интенсивную пластическую деформацию осуществляют путем прокатки на реверсивном стане до сечения заготовки 10×10 мм2, ротационной ковки на воздухе при температуре 600°С и одно- или многократного волочения до диаметра проволоки 1 мм, а рекристаллизационный отжиг полученной проволоки проводят в вакууме при температуре 600°С в течение 12 ч. Полученная проволока характеризуется высокой пластичностью и эксплуатационными характеристиками. 7 ил.

Устройство относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры. Устройства подачи пруткового материала оборудованы токоподводами, которые обеспечивают горение независимой электрической дуги между свободными концами прутковых материалов, а также установленным в камере в противоток к плазменной струе кольцевым газовым соплом для обеспечения циркуляции газового потока навстречу движению потока частиц порошка. Обеспечивается повышение производительности получения порошков сферической формы мелкой фракции при отсутствии слипания частиц. 1 ил.

Изобретение относится к медицине, в частности к технологии получения биосовместимого композиционного материала с основой из наноструктурного никелида титана и биодеградируемым лекарственным слоем полилактид с гепарином. Способ получения включает приготовление раствора полимера, добавление лекарственного средства. При этом покрытие наносят на коррозионностойкую основу из наноструктурного никелида титана в два слоя с разницей 10 секунд. Для приготовления раствора используют полилактид молекулярной массы 45 кДа, в качестве растворителя используют хлороформ. Масса полилактида составляет 2 г в хлороформе объемом 200 миллилитров. Растворение происходит при температуре 80°C, затем полученный раствор охлаждают до 30°С и осуществляют добавление лекарственного вещества, а именно гепарина, прямого антикоагулянта, в количестве от 1 до 3 процентов от массы полимера. Далее происходит перемешивание в течение 30 минут для равномерного распределения в полимерной матрице. Сушку осуществляют в течение 24 часов на воздухе при 30°С в термостате. Технический результат заключается в получении композиционного материала с коррозионностойкой гипоаллергенной основой из наноструктурного никелида титана и гомогенным однородным лекарственным покрытием, которое обеспечивает пролонгированное контролируемое воздействие лекарственного агента на срок более чем 30 суток. 3 пр., 3 ил.
Изобретение относится к способу получения композиционного материала «Ti-Nb-Ta-Zr полигликолидлактид с введенным лекарственным препаратом» для кава-фильтров, применяемых в эндоваскулярной профилактике тромбоэмболии легочной артерии, и может быть использовано в медицине. Предложенный способ включает растворение полимера в хлороформе, добавление лекарственного средства, окунание проволоки из сплава TiNbTaZr в полученный раствор и сушку покрытия в течение 2-х суток на воздухе при 37°С в термостате и отличается тем, что для растворения используется Поли(гликолид-D,L-лактида) с соотношением 30/70 молекулярной массой от 45 до 180 кДа из расчета от 2 до 10 г на 200 мл хлороформа, в качестве лекарственного средства используются пуролаза или стрептокиназа с концентрацией от 1 до 5% вес. Предложен новый эффективный способ получения композиционного материала на основе проволоки TiNbTaZr с поверхностным полимерным слоем, содержащим лекарственный препарат, для кава-фильтров, применяемых в эндоваскулярной профилактике тромбоэмболии легочной артерии. 2 пр.

Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации и раскрывает саморасширяющийся удаляемый Кава-фильтр. Кава-фильтр характеризуется тем, что состоит из сплава TiNbTaZr и включает 3 нераздельные части в готовом изделии: 1 - плетеная из тонкой проволоки TiNbTaZr основа, 2 - биорезорбируемый полимер с внедренным лекарством, нанесенным на поверхность первого элемента, 3 - плетеный конусный элемент сетчатой структуры из тонкой проволоки TiNbTaZr, который располагается поперек течения крови и служит для удержания тромбов. Изобретение расширяет арсенал имплантируемых в сосуды человека изделий, выполненных из материала с эффектом памяти формы, обеспечивающих отсутствие аллергических реакций со стороны организма и при этом обладающих свойством саморазвертывания. Конструкция и материал кава-фильтра обладают высокой безопасностью для организма посредством использования безникелевого материала, минимизируя возможность постоперационных осложнений и негативных реакции организма, одновременно гарантируя качественную нетравмирующую фиксацию изделия, эффективное улавливание тромбов за счет плетеной формы изделия, применяемого материала и контролируемого выхода лекарственного средства. 1 пр., 2 ил.
Изобретение относится к области медицины, а именно к рентгеноэндоваскулярной дилатации. Способ изготовления сосудистого импланта из сплавов с эффектом памяти формы, сплетенного единой нитью, включает автоматизированное плетение импланта на оправку модифицированным намоточным станком по заданному алгоритму. При плетении нить проволоки идет от одного торца будущего изделия к другому под углом, обеспечивающим смешение нити при каждом подходе к торцу оправки и перекрестное переплетение нити в местах пересечения в плоскости поверхности оправки, термомеханическую обработку в вакуумной среде для обеспечения запоминания формы и надежной защиты от окисления или азотирования изделия в два этапа: на первом отжиг проводится на оправке, на которой производилось плетение, затем на оправку навинчиваются торцевые расширители для увеличения диаметра торцов изделия, следом проводят второй этап отжига, снимают изделие с оправки, далее изделие подвергается ультразвуковой очистке в ванне спирта. Изобретение характеризуется тем, что плетеное изделие обладает двумя концами нити проволоки.

Изобретение относится к области металлургии, а именно к способу получения углеграфитового композиционного материала, имеющего высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. Способ получения углеграфитового композиционного материала включает вакуумную дегазацию пористой заготовки в растворе электролита, покрытие пористой заготовки гальваническим никелевым покрытием, ее пропитку расплавом матричного сплава алюминия под воздействием избыточного давления за счет термического расширения расплава сплава алюминия при нагреве, при этом вакуумную дегазацию пористой заготовки ведут в растворе никелевого электролита, гальваническое никелевое покрытие наносят на углеграфитовый каркас заготовки, а затем заготовку подвергают алитированию в расплаве алюминиевого сплава, при этом пропитку ведут при нагреве на 300°C выше температуры рекристаллизации сплава алюминия. Техническим результатом изобретения является повышение производительности и качества композиционных материалов. 1 табл., 1 пр., 2 ил.

Изобретение относится к технологии получения композиционного биомедицинского материала никелид титана-полилактид с возможностью контролируемой доставки лекарственных средств. Предложенный способ получения биомедицинского материала никелид титана-полилактид включает получение раствора полилактида с молекулярной массой 180 кДа в хлороформе. В остывший до 30°С раствор полилактида добавляют лекарственное средство гентамицин, цефотаксим или линкомицин в концентрации от 1% до 8% вес. Окунают проволоку из никелида титана (TiNi) в остывший до 30°С раствор полилактида с лекарственным средством, выдерживают в течение 5 мин. Извлекают полученный материал и сушат при комнатной температуре 20-22°С в течение 24 ч. Изобретение позволяет получать однородные по толщине пленки полилактида с лекарством с возможностью контролируемой доставки лекарственных средств в течение определенного времени, достаточного для предотвращения отторжения имплантата тканями. 3 ил., 3 пр.

Изобретение относится к способу формирования упрочненного приповерхностного слоя в процессе лазерной резки деталей из листовых легированных сталей. Осуществляют газодинамическое воздействие на зону реза потоком лазерного излучения в инфракрасной области спектра. Перед началом резки формируют поток лазерного излучения исходя из требуемой глубины (L) упрочненного поверхностного слоя в зоне лазерной резки деталей, определяемой из выражения: где СЭ - углеродный эквивалент, %; Н - толщина листа, мм; W - мощность излучения, кВт; V - скорость лазерной резки, м/мин; Р - давление технического газа, (кПа)Р - положение фокального пятна, мм; -2,02547; 0,22632; 2,65975; -2,50094; 20,9835 - математические константы. Струю технологического кислорода подают соосно с лазерным пучком в зону лазерной резки. Изобретение позволяет совмещать процесс получения готовых изделий из листового материала с одновременно реализуемым их поверхностным упрочнением и управлением глубиной упрочненного поверхностного слоя. 6 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к способам изготовления тонкой проволоки из биосовместимого сплава TiNbTaZr для кава-фильтров и стентов. Способ включает выплавку заготовки и ее деформационно-термическую обработку. Возможность получения изделий повышенной прочности, пластичности и улучшенных эксплуатационных характеристик обеспечивается за счет того, что выплавку слитков проводят в электродуговой вакуумной печи с нерасходуемым вольфрамовым электродом, гомогенизационный отжиг выплавленных слитков осуществляют в вакууме 5*10-5 мм рт.ст. при температуре 600°С в течение 12 ч, осуществляют прокатку на реверсивном стане, в процессе которой заготовку обжимают с уменьшением ее поперечного сечения до сечения, равного 10×10 мм2, и увеличением длины, ротационную ковку с уменьшением площади поперечного сечения заготовки под воздействием перемещающегося в радиальном направлении инструмента при относительном вращении заготовки и инструмента, после чего проводят волочение заготовки посредством ее постепенного многократного протягивания через волочильный инструмент для поэтапного уменьшения поперечного сечения исходной заготовки до диаметра, равного 0,1 мм. 5 ил.

Изобретение относится к способу получения биодеградируемого полимерного покрытия на основе полилактида на проволоке TiNbTaZr для кава-фильтров, применяемых в эндоваскулярной профилактике тромбоэмболии легочной артерии. Способ включает растворение полилактида в хлороформе, добавление лекарственного средства, окунание проволоки в полученный раствор и сушку покрытия. Покрытие наносится на проволоку из сплава TiNbTaZr, для растворения используется Поли-D,L-лактид молекулярной массой от 45 до 180 кДа из расчета от 2 до 10 г на 200 мл хлороформа, в качестве лекарственного средства используется гепарин с концентрацией от 1 до 5% вес., сушка осуществляется в течение 2-х суток на воздухе при 37°С в термостате. Изобретение позволяет получить покрытие с заданной толщиной и контролируемой биодеградацией. 2 пр.

Изобретение относится к технической керамике в виде композиционного материала SiC-TiN. Способ включает горячее прессование порошковой смеси. В качестве порошковой смеси используют смесь, содержащую 53-83 мас.% порошка карбида кремния, 5-40 мас.% порошка титана и 7 мас.% порошка спекающей добавки в виде Y2O3-Al2O3-ZrO2 или Y2O3-Al2O3 в соотношении 3:5. В процессе горячего прессования обеспечивают совмещение спекания и азотирования порошковой смеси при температуре 1600°С в атмосфере азота в течение 30 мин при давлении 30 МПа, затем температуру повышают до 1850°С и проводят выдержку 30 мин с получением композиционного материала основными фазами SiC и TiN. Обеспечивается высокая прочность и твердость керамического материала. 1 табл., 1 ил.

Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов титан-ниобий-тантал-цирконий с эффектом памяти формы и может быть использовано в металлургии, машиностроении и медицине, в частности при изготовлении медицинских устройств типа «стент», «Кафа-фильтр» и прочих. Способ получения наноструктурной проволоки из сплава титан-ниобий-тантал-цирконий с эффектом памяти формы включает гомогенизирующий отжиг, интенсивную пластическую деформацию и рекристаллизационный отжиг. Гомогенизирующий отжиг слитка проводят в вакууме при температуре 600°C в течение 16 ч. Интенсивную пластическую деформацию осуществляют путем многостадийной прокатки при температуре 15-30°C с обеспечением достижения в полученной заготовке накопленной степени деформации в 400%. Рекристаллизационный отжиг осуществляют в вакууме при температуре 550°C, затем заготовку нарезают на прутки электроэрозионным методом, проводят многостадийную ротационную ковку прутков при температуре 250°C и многостадийное волочение при температуре 80-100°C и степени деформации не более 80% с получением проволоки. При этом после каждой стадии ротационной ковки и волочения осуществляют отжиг в вакууме при температуре 550°C. Повышается прочность при сохранении пластичности наноструктурной проволоки титан-ниобий-тантал-цирконий с эффектом памяти формы. 4 ил., 1 табл., 3 пр.

Изобретение относится к деформационнотермической обработке сплава TiNiTa с эффектом памяти формы и может быть использовано в медицине при изготовлении стентов. Способ получения наноструктурной проволоки из сплава титан-никель-тантал с эффектом памяти формы включает термомеханическую обработку заготовки, сочетающую интенсивную пластическую деформацию и дорекристаллизационный отжиг. Интенсивную пластическую деформацию проводят в три этапа. На первом этапе осуществляют прокатку при температуре не выше 750°C с достижением накопленной степени деформации (е) более 400%. На втором этапе осуществляют ротационную ковку в несколько стадий со снижением температуры в диапазоне от 700 до 600°C и степенью деформации не более 90%. На третьем этапе осуществляют волочение в несколько стадий со снижением температуры в диапазоне от 600 до 200°C и степенью деформации не более 60%. Отжиг проводят после каждого этапа деформации при температуре 200-450°C. Повышается прочность при сохранении пластичности наноструктурного сплава. 1 ил., 1 пр.

Изобретение относится к области металлургии, а именно к композиционным материалам (КМ) на основе сплавов оловянных баббитов и способам их получения, и может быть использовано для изготовления подшипников скольжения узлов трения в транспорте, турбиностроении, судостроении. Композиционный материал на основе сплава Sn-Sb-Cu содержит армирующие дискретные частицы. В качестве армирующих дискретных частиц он содержит углеродсодержащие компоненты размером <100 нм в количестве 0,1-2 мас. % в виде смеси углеродных нанотрубок, аморфного углерода, наночастиц графита и покрытых углеродом металлических частиц и высокопрочные керамические частицы порошка SiC размером 14-63 мкм в количестве 5-10 мас. %. Способ получения композиционного материала на основе сплава Sn-Sb-Cu включает получение смеси армирующих дискретных частиц и порошка матричного сплава Sn-Sb-Cu. Осуществляют смешивание армирующих дискретных частиц в виде углеродных нанотрубок, аморфного углерода, наночастиц графита, покрытых углеродом металлических частиц и высокопрочных керамических частиц порошка SiC с порошком матричного сплава высокоэнергетическим перемешиванием в шаровой мельнице в течение 20-30 мин. Полученную смесь подвергают горячему двухстороннему прессованию при температуре 280-320°С и давлении 300-340 МПа и последующему спеканию. Повышается износостойкость материала в условиях ограниченной смазки и сухого трения скольжения. 2 н.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к медицине, а именно малоинвазивной медицине. Способ получения биодеградируемого полимерного покрытия для контролируемого выхода лекарственного средства включает растворение хитозана в кислотах, добавление лекарственного средства, окунание проволоки из никелида титана в полученный раствор, фиксацию покрытия и сушку. Для растворения хитозана в качестве растворителя используют фосфорную, соляную, глутаминовую или уксусную кислоты с концентрацией от 1 до 4% вес. В качестве лекарственного средства используется линкомицин, гентамицин или цефотоксим с концентрацией от 0,9 до 7% вес. Фиксация покрытия происходит в спиртовом аммиачном растворе в соотношении 1:2 с последующей сушкой при температуре 40-45°С в течение 24 часов. Изобретение обеспечивает однородную толщину покрытия и контролируемую скорость выхода лекарственного средства в зависимости от толщины покрытия. 3 ил., 1 табл., 3 пр.

Изобретение относится к области металлургии, в частности к получению армированных композиционных материалов, и может быть использовано для получения композиционных материалов, работающих в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п. Композиционный материал содержит углеграфитовый каркас, пропитанный матричным сплавом на основе меди, содержащим, мас.%: смесь порошков тетрабората лития и лигатуры медь-бор с содержанием в смеси 6% лития и 29% бора 0,5-3,0, фосфор 4,0-8,0, медь - остальное. Техническим результатом изобретения является повышение электропроводности композиционного материала при сохранении прочностных характеристик. 7 пр., 1 табл.

Изобретение относится к области металлургии, а именно к способу изготовления композиционных материалов пропиткой пористого каркаса, имеющих высокую электропроводность, антифрикционные свойства, стойкость в агрессивных средах. В расплав матричного сплава погружают пористую заготовку. Осуществляют вакуумную дегазацию, нагрев и воздействие избыточным давлением на заготовку за счет термического расширения расплава в замкнутом объеме емкости. При нагреве дополнительно проводят пропитку заготовки, последующее охлаждение и кристаллизацию. Используют емкость из материала с минимальным коэффициентом термического расширения. В качестве расплава матричного сплава используют алюминий, или медь, или сурьму и нагревают его на 100°C выше температуры ликвидус используемого сплава. Техническим результатом изобретения является расширение функциональных возможностей пропитки за счет увеличения номенклатуры сплавов, используемых в качестве матричных для получаемых новых композитов, при сохранении высокого качества композиционных материалов. 1 з.п. ф-лы, 1 ил., 1 табл., 3 пр.

Изобретение относится к области получения литых композиционных материалов и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п. Матричный сплав на основе меди для получения пропиткой композиционных материалов с углеграфитовым каркасом содержит смесь порошков тетрабората лития и лигатуры медь-бор в соотношении, соответствующем содержанию в смеси 30% бора и 8% лития, при следующем соотношении компонентов, мас.%: смесь порошков тетрабората лития и лигатуры медь-бор 0,1-5,0, медь - остальное. Техническим результатом изобретения является повышение износостойкости и электропроводности композиционного материала. 1 табл., 7 пр.
Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок пантографов, токосъемников, а также в различных узлах и изделиях ракетно-космического назначения. Литейный сплав на основе алюминия для пропитки углеграфитового каркаса содержит, мас.%: кремний 11,0-13,0, никель 0,5-3,0, хром 0,5-2,0, свинец 0,1-1,5, ванадий 0,01-0,3, алюминий - остальное. Техническим результатом изобретения является повышение прочности сцепления между пропитывающим сплавом и армирующим каркасом. 5 пр., 1 табл.

Изобретение относится к области металлургии, а именно к получению армированных композиционных материалов, и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, работающих в агрессивных средах в качестве торцовых уплотнителей, подшипников скольжения и направляющих. Матричный сплав на основе свинца для получения композиционных материалов пропиткой содержит, мас.%: олово 4,0-8,0, медь 0,5-3,0, сера 4,5-20,5, свинец остальное. Композиционный материал характеризуется повышенной износостойкостью и коррозионной стойкостью в агрессивных средах.1 табл., 9 пр.

Изобретение относится к области металлургии, а именно к созданию композиционных материалов пропиткой пористого каркаса. Пористую заготовку погружают в расплав матричного сплава, вакуумной дегазацией, нагревом и воздействием избыточным давлением на заготовку за счет термического расширения расплава в замкнутом объеме емкости, в качестве расплава матричного сплава используют расплав свинца, а при нагреве дополнительно проводят пропитку заготовки, последующее охлаждение и кристаллизацию. Используют емкость, состоящую из двух камер: камеры для пропитки и камеры для создания давления, при этом пористую заготовку погружают в расплав матричного сплава алюминия, находящегося в камере для пропитки, и нагревают на 100°C выше температуры ликвидус сплава алюминия одновременно с расплавом свинца, находящимся в камере для создания давления. Полученный композиционный материал имеет высокую электропроводность, антифрикционные свойства и стойкость в агрессивных средах. 2 з.п. ф-лы, 2 ил., 1 табл., 3 пр.

Изобретение относится к металлургии, а именно к получению армированных композиционных материалов методом пропитки, и может быть использовано для изготовления вкладышей подшипников скольжения, торцевых уплотнений. Матричный сплав для получения композиционного материала на основе сурьмы для пропитки углеграфита содержит, мас.%: олово 9,0-18,0, алюминий 1,0-4,0, титан 1,0-2,0, сурьма - остальное. Повышаются механические свойства, проникающая способность матричного сплава на основе сурьмы при минимальном содержании легирующих компонентов. 1 табл., 5 пр.

Изобретение относится к области металлургии и может быть использовано для получения пропиткой композиционных материалов с армирующим углеграфитовым каркасом, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.д

Изобретение относится к области металлургии, в частности к получению армированных композиционных материалов и отливок, и может быть использовано для получения пропиткой композиционных материалов, имеющих армирующий углеграфитовый каркас, которые работают в условиях трения в качестве электротехнических изделий, таких как токосъемники, вставки пантографов, электротехнические щетки и т.п

 


Наверх