Патенты автора Новопашин Сергей Андреевич (RU)

Изобретение относится к области нанотехнологий и может быть использовано в обогащении полезных ископаемых для извлечения ценных минералов, а также их очистки от магнитных примесей, регенерации магнитных суспензий при гравитационном обогащении. Способ синтеза магнитной жидкости на основе воды и магнитных металл-углеродных наночастиц включает стабилизацию магнитных наночастиц поверхностно-активным веществом, сепарацию и ультразвуковое диспергирование полученного раствора. В обработанный в ультразвуковой ванне при температуре 25-30°С в течение 20-40 минут водный раствор неонола аф 9-12 концентрацией 1-5 мас. % добавляют магнитные металл-углеродные наночастицы до получения раствора магнитной жидкости концентрацией 2-10 мас. %. Магнитную жидкость обрабатывают в ультразвуковой ванне при температуре 25-30°С в течение 60-120 минут. Отстаивают в течение 72 часов и сливают сверху 80 % объема. Слитую суспензию обезвоживают в ультразвуковой ванне при температуре 80°С, оставляя 25 мас. %. Металл-углеродные наночастицы имеют размеры 3-15 нм и представляют собой магнитные наночастицы металла, окруженные аморфным углеродным материалом. Изобретение позволяет синтезировать магнитную жидкость на основе воды и магнитных наночастиц на углеродной матрице, устойчивую к коагуляции магнитных частиц. 6 ил.

Изобретение может быть использовано при получении контрастирующих веществ в магниторезонансной диагностике, суспензий для магнитной сепарации белков и фрагментов молекул ДНК и РНК, для адресной доставки лекарственных средств. Синтез порошка суперпарамагнитных наночастиц Fe2O3 проводят в два этапа. Сначала осуществляют плазменно-дуговой синтез металл-углеродного материала. Синтезированный материал отжигают в кислородсодержащей среде при атмосферном давлении. В плазме электрического дугового разряда распыляют металл-углеродный композитный электрод, в просверленную по центру полость которого запрессована смесь порошков железа и графита в весовом соотношении 2/1. Синтез проводят при давлении буферного газа 50 торр. Синтезированный материал представляет собой углеродную матрицу с железосодержащими наночастицами размером 5-10 нм. Отжиг осуществляют путем нагрева полученного материала до температуры 300°C, выдержки в течение двух часов и остывания в кислородсодержащей атмосфере. Изобретение позволяет получить материал, устойчивый к окислению и коагуляции, увеличить длительность его хранения, транспортировать его к месту использования для изготовления суспензий, уменьшив слипание частиц. 8 ил.

Изобретение может быть использовано в химической промышленности. Для получения наночастиц диоксида титана проводят откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом. Композитный электрод представляет собой графитовый стержень с просверленной по центру полостью, которая заполнена спрессованной смесью порошков титана и графита. Весовое соотношение титан/графит составляет 1/2. В плазме электрического дугового разряда распыляют композитный электрод. Отжиг синтезированного материала проводят путем нагрева в кислородсодержащей среде при атмосферном давлении до температуры 900-1000°С и выдержки в течение 1 ч. Изобретение позволяет получить диоксид титана со структурой рутила с высокоразвитой поверхностью, без затрат на коррозионностойкое оборудование и высоких требований к качеству сырья. 1 з.п. ф-лы, 12 ил., 1 табл.

Изобретение относится к области нанотехнологий, а именно к пламенно-дуговой технологии синтеза наноструктурированных композиционных материалов. Предложенный способ синтеза наноструктурного композиционного CeO2-PdO материала в плазме электрического разряда включает откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом, представляющим собой графитовый стержень с просверленной по центру полостью, и распыление композитного электрода. При этом в плазме электрического дугового разряда распыляют металл-углеродный композитный электрод, в просверленной по центру полости которого установлен стержень из церия, обернутый палладиевой фольгой, и весовое соотношение Pd/Ce составляет от 3 до 9%. Затем выполняют отжиг синтезированного материала, включающего нанокристаллы Се2О3 и небольшое количество нанокристаллов Pd с характерными размерами 2-5 нм, путем его нагрева в кислородсодержащей среде при атмосферном давлении до температур 600, 700, 800, 900°С, выдержки в течение 2 ч и медленного охлаждения. Данный способ позволяет получать наноструктурный композиционный CeO2-PdO материал, который может использоваться как катализатор, имеющий высокую активность при низких температурах, а также повышенную термостабильность и устойчивость к коррозии в агрессивных средах. 1 з.п. ф-лы, 6 ил.

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3. Способ синтеза полых наночастиц γ-Al2O3 реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом и распыление композитного электрода, выполненого в виде графитового стержня с полостью, в которой установлена алюминиевая проволока при весовом соотношении C:Al 15:1, а на второй - отжиг синтезированного материала, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа. Технический результат - получение при синтезе 100% пригодного для использования в каталитических приложениях и материаловедении нанодисперсного порошка оксида алюминия γ-Al2O3, частицы которого представляют собой полые сферы диаметром 6-14 нм. 1 з.п. ф-лы, 5 ил.

Изобретение относится к способу синтеза наночастиц карбида вольфрама
Изобретение относится к отделочным материалам и может использоваться в качестве декоративного покрытия внутренних стен в строительной промышленности, при реконструкции зданий и ремонте помещений

Изобретение относится к химической промышленности и может быть использовано для получения водорода и углеродного наноструктурного материала
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх