Способ электроэрозионного вырезания внешнего острого угла контура детали

 

Использование: электроэрозионная обработка сложных контуров проволочным электродом-инструментом. Сущность изобретения: направляющие электрода-проволоки на максимальной скорости вырезания при заданном технологическом режиме перемещают от вершины острого угла на растояние, большее суммы максимального прогиба электрода-проволоки и половины ширины паза, вырезаемого электродом-проводкой, возврат производят с отключением импульсов генератора на величину максимального прогиба электрода-проволоки, затем подают импульсы с генератора на обрабатываемую деталь и электрод-проволоку и на максимальной скорости вырезания перемещают направляющие электрода-проволоки перпендикулярно к биссектрисе острого угла, далее от эквидистанты второй грани острого угла на величину максимального прогиба электрода-проволоки, после чего отключают импульсы генератора и направляющие электрода-проволоки отводят на эквидистанту второй грани острого угла и вырезают вторую грань острого угла на максимальной скорости вырезания. 8 ил.

Изобретение относится к электрофизическим способам обработки и может быть использовано в станкоинструментальной, электронной и приборостроительной отраслях промышленности. При электроэрозионном вырезании электродом-проволокой возникают погрешности на обрабатываемой детали, связанные с прогибом электрода-проволоки. Величина прогиба на грубых режимах достигает нескольких десятков долей миллиметра. Погрешности от прогиба проявляются особенно сильно при резких изменениях направления перемещения электрода-проволоки, т. е. при обработке углов контура детали.

При обработке внешнего острого угла, величина которого меньше 30о, возникает резкое смещение узловой точки эквидистанты от вершины острого угла. Вырезание острого угла по геометрической эквидистанте в этом случае не целесообразно из-за увеличения времени обработки.

Известен способ обработки острых углов, при котором направляющие электрода-проволоки перемещают по эквидистанте первой грани за вершину угла на некоторое расстояние l1, а затем направляющие перемещают к эквидистанте второй грани под углом на величину l2 и при этом < . Величины l1, l2 и определяют экспериментально для каждого технологического режима. Однако указанный способ позволяет уменьшить погрешность от прогиба только на 50% . В противопоставляемом способе проблема уменьшения времени обработки острого угла не затронута. Известны способы, в которых решается вопрос сокращения траектории перемещения направляющих электрода-проволоки для уменьшения времени обработки острого угла. Однако представленные известные способы не предусматривают коррекцию от прогиба, поэтому при реализации этих способов будут возникать значительные искажения в профиле обрабатываемого угла.

Прототипом предлагаемого способа является известный способ, позволяющий компенсировать погрешности от прогиба электрода-проволоки. Этот способ основан на уменьшении частоты импульсов генератора и скорости вырезания при подходе к узловой точке эквидистанты острого угла. В одном из вариантов осуществления этого способа предлагается перемещать направляющие электрода-проволоки за вершину угла по эквидистанте на небольшое расстояние, например, 50 мкм, а затем возвратить направляющие обратно в узловую точку. При этом резко уменьшают скорость вырезания для постепенного выпрямления электрода-проволоки. Недостатком этого способа является увеличение времени обработки угла. Кроме того, в описании прототипа отсутствуют данные о выборе оптимального расстояния, на котором производят снижение частоты импульсов генератора и скорости вырезания, не указаны зависимости уменьшения частоты импульсов генератора и скорости вырезания. Общие указания о линейности изменения этих величин недостаточны для построения оптимального технологического процесса, что в свою очередь вызывает увеличение времени обработки. В рассматриваемом способе проблема обработки острых углов меньших 30о вообще не затронута.

Целью предлагаемого способа является уменьшение времени обработки и повышения точности изготовления острого угла.

Поставленная цель достигается тем, что при вырезании электродом-проволокой внешнего острого угла контура детали с перемещением направляющих электрода-проволоки по эквидистанте первой грани с возвратом по пройденной траектории направляющие электрода-проволоки на максимальной скорости вырезания при заданном технологическом режиме перемещают от вершины острого угла на расстояние, большее суммы максимального прогиба электрода-проволоки и половины ширины паза, вырезаемого электродом-проволокой, возврат производят с отключением импульсов генератора на величину максимального прогиба электрода-проволоки, затем подают импульсы с генератора на обрабатываемую деталь и электрод-проволоку и на максимальной скорости вырезания перемещают направляющие электрода-проволоки перпендикулярно к биссектрисе острого угла, далее от эквидистанты второй грани острого угла на величину максимального прогиба электрода-проволоки и после чего с отключением импульсом генератора направляющие электрода-проволоки отводят на эквидистанту второй грани острого угла и вырезают вторую грань острого угла на максимальной скорости вырезания.

Указанные отличия позволяют изготавливать внешние острые углы за минимальное время по сравнению с известными способами. При этом точность обработки повышается из-за уменьшения времени протекания электрохимического растворения, сопутствующего с электроэрозией, а также уменьшения количества боковых разрядов.

На фиг. 1 представлен внешний острый угол 1 АВС, который требуется вырезать электродом-проволокой; на фиг. 2 - схематическое изображение положения электрода-проволоки 2 относительно обрабатываемой детали 1 (внешнего острого угла) и направляющих 3 и 4 электрода-проволоки; на фиг. 3-7 - различные фазы обработки острого угла АВС; на фиг. 8 - траектория перемещения направляющих 3 и 4 электрода-про- волоки при вырезании острого угла АВС.

Электрод-проволока 2 под воздействием электрических разрядов находится в изогнутом состоянии, максимальный прогиб электрода-проволоки составляет max в плоскости ММ, проходящей через середину обрабатываемой детали 1 (см. фиг. 2). Геометрическая эквидистанта А1В1С1 смещена от граней острого угла АВС на расстояние , где dэ - диаметр электрода-проволоки, мм; q - результирующий межэлектродный зазор.

Острые углы являются разновидностью внешнего угла. Признаком острого угла служит резкое смещение узловой точки эквидистанты от вершины острого угла. Выбег узловой точки l (см. фиг. 1) имеет значение l = BB1= , где - ширина результирующего паза, = dэ + 2q, мм - величина острого угла, град.

Обработка острого угла АВС перемещением направляющих электрода-проволоки по эквидистанте А1В1С1 становится нецелесообразным из-за увеличения времени обработки. Так, например, при = 0,4 мм для различных величин острых углов имеем = 28о; l = 4 /2 = 0,8 мм = 20о; l = 5,7 /2 = 1,1 мм = 15о; l = 7,5 /2 = 1,5 мм = 10о; l = 11,3 /2 = 2,29 мм Причем траектория перемещения направляющих электрода-проволоки удваивается по отношению величины l, так как направляющие перемещают по двум граням острого угла на одинаковую величину (см. фиг. 1).

Предложенный способ осуществляется следующим образом. Направляющие 3 и 4 электрода-проволоки 2 перемещают по эквидистанте А1В1 из точки а вдоль первой грани острого угла АВС обрабатываемой детали 1 (см. фиг. 3) с заданной максимальной скоростью вырезания при требуемой шероховатости поверхности. Далее направляющие 3 и 4 перемещают за вершину острого угла В с точки b на отрезок bc. Скорость вырезания до точки с также равна максимально заданной скорости вырезания. Величина отрезка с составляет
bc = dc + bd, где dc = max,
bd > .

Наиболее оптимальным значением является
bd = (1,11,2), при котором при дальнейшей обработке вершина острого угла не подвергается лишнему воздействию электрических разрядов. В точке с направляющие 3 и 4 электрода-проволоки 2 останавливают и на быстром ходу с выключением импульсов генератора направляющие 3 и 4 перемещают обратно в точку d. В точке d электрод-проволока 2 выпрямляется и занимает строго вертикальное положение, т. е. прогиб по первой грани полностью компенсируется (см. фиг. 4). Затем направляющие 3 и 4 электрода-проволоки 2 перемещают перпендикулярно к биссектрисе ВВ1 острого угла АВС с максимальной заданной скоростью вырезания до точки f, лежащей на эквидистанте В1С1 второй грани ВС и далее до точки g (см. фиг. 5). Величину отрезка fg задают равной максимальному прогибу max. В точке g направляющие 3 и 4 останавливают, а затем на быстром ходу с выключением напряжения направляющие 3 и 4 электрода-проволоки 2 перемещают обратно в точку f (см. фиг. 6). В точке f электрод-проволока 2 занимает строго вертикальное положение, т. е. компенсируется прогиб, возникший на отрезке df. Далее направляющие электрода-проволоки перемещают с максимальной заданной скоростью вырезания по эквидистанте В1С1 острого угла АВС по траектории m1-m и вырезают вторую грань ВС (см. рис. 7). Выбранная величина отрезка bd больше половины результирующего зазора на 20% , что позволяет избежать дополнительных разрядов на вершину угла В при прохождении электрода-проволоки по участку траектории dg перемещения направляющих 3 и 4. Благодаря использованию указанного приема точность вырезания острого угла АВС повышается, так как вершина угла В при обработке граней АВ и ВС подвергается минимально возможному воздействию электрических разрядов и сопутствующих нежелательных процессов электрохимического растворения.

Приведем сравнительный анализ расчета времени обработки острого угла предлагаемым способом и способом, предложеным в прототипе.

1. Время обработки предложенным способом. Условия обработки: обрабатываемая деталь - сталь нержавеющая 40Х, толщина 80 мм, шероховатость обработанной поверхности 2 мкм, частота импульсов fn = 50 кГц, импульсный ток 120 А, длительность импульсов 2 мкс, линейная скорость вырезания Vn = 1 мм/мин, величина прогиба 0,5 мм, скорость холостых перемещений Vx = 50 мм/мин.

Расчетная траектория перемещения направляющих электрода-проволоки (см. фиг. 8): bd-dc-cd-de-ef-fg-gf-fm1 отрезки - bd, dc, df, fg и fm1 - вырезают. Отрезки - сd и gf проходят на холостом ходу. Числовые значения отрезков траектории
bd = fm1 = 0,24 мм
dc = cd = 0,5 мм
de + ef = df = 0,4 мм
fq = gf = 0,5 мм
Cуммарное время ty обработки вершины острого угла с компенсацией прогиба электрода-проволоки
ty= + + + + + + = + + + +
+ + + = 2,06 мин .

2. Обработка по прототипу. Законы управления частотой импульсов fiгенератора и скорости Vi вырезания определяются из выражений
fi= fn- xi,
Vi= fi, где fn - заданная максимальная частота импульсов генератора при вырезании граней острого угла, обеспечивающая требуемую шероховатость обработанной поверхности, имп. /с;
fmin - минимальная частота импульсов генератора в конечной точке, при которой прогиб электрода-проволоки равен или меньше допустимой погрешности для нашего случая = 500 имп. /с;
Vn - номинальная технологическая скорость вырезания, мм/мин;
Xi - текущая координата, отсчитанная от начала уменьшения частоты импульсов и скорости вырезания, мм;
lт - отрезок траектории, на котором осуществляют уменьшение частоты импульсов и скорости вырезания, мм.

Минимальный отрезок торможения будет равен величине максимального прогиба, т. е. lт = max = 0,5 мм. Время обработки t отрезка lт при линейном законе уменьшения частоты импульсов генератора и скорости вырезания определяется из формулы
t= -ln.

Траектория перемещения направляющих электрода-проволоки во втором случае
а1d + df + fm1, где a1d = 0,5 мм,
df = 0,4 мм,
fm1 = 0,24 мм.

-
По предложенному способу время обработки острого угла уменьшается на 2,36 мин или в 2,1 раза. Кроме того, предложенный способ реализуется без управления частотой генератора и скоростью вырезания. Величина прогиба max определяется заранее при определении оптимальных технологических режимов обработки или автоматически при обработке детали.


Формула изобретения

СПОСОБ ЭЛЕКТРОЭРОЗИОННОГО ВЫРЕЗАНИЯ ВНЕШНЕГО ОСТРОГО УГЛА КОНТУРА ДЕТАЛИ, при котором направляющие электрода-проволоки перемещают за вершину острого угла по эквидистанте первой грани, а затем возвращают по пройденной траектории, отличающийся тем, что направляющие электрода-проволоки на рабочей скорости вырезания при заданном технологическом режиме перемещают от вершины острого угла на расстояние, большее суммы максимального прогиба электрода-проволоки и половины ширины паза, вырезаемого электродом-проволокой, возврат производят с отключением импульсов генератора на величину максимального прогиба электрода-проволоки, затем подают импульсы с генератора на обрабатываемую деталь и электрод-проволоку и на рабочей скорости вырезания перемещают направляющие электрода-проволоки перпендикулярно к биссектрисе острого угла, далее эквидистанты второй грани острого угла на величину максимального прогиба электрода-проволоки и после чего отключают импульсы генератора и направляющие электрода-проволоки отводят на эквидистанту второй грани острого угла и вырезают вторую грань острого угла.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8



 

Похожие патенты:

Изобретение относится к машиностроению, в частности к электроэрозионной обработке

Изобретение относится к металлообработке, а именно к электроэрозионной обработке, и может быть использовано при вырезании сложных контуров, например, в вырубных штампах

Изобретение относится к электрофизическим и электрохимическим методам обработки и предназначено для использования при вырезании контуров с прямолинейными участками непрофилированным электродом-проволокой на станках, обеспечивающих независимое перемещение верхней и нижней направляющих

Изобретение относится к электрофизическим и электрохимическим методам размерной обработки и предназначено для вьфезания контуров электродом-проволокой

Изобретение относится к области электроэрозионной обработки (ЭЭО) сложнопрофильных металлических изделий проволочным электродом-инструментом (ЭИ) и может быть использовано при изготовлении литейной и штамповой оснастки в литейных и штамповых производствах различных областей машиностроения

Изобретение относится к области электрической размерной обработки материалов и может быть использовано при изготовлении электрической вырезкой проволочным инструментом деталей, габариты которых превышают рабочий ход скобы с инструментом или стола вдоль или вокруг координатных осей станка

Изобретение относится к области машино-, приборостроения, в частности к электроэрозионной обработке (ЭЭО) сложнопрофильных изделий из токопроводящих материалов проволочным электродом-инструментом (ЭИ) на электроэрозионных вырезных станках с ЧПУ, и может быть использовано при изготовлении цилиндрических эвольвентных нереверсивных, малонагруженных зубчатых колес (ЗК) с наружными зубчатыми венцами (ЗВ)
Изобретение относится к способам резки хрупких неметаллических материалов, в частности к способам электроискровой резки полупроводниковых пластин типа (BixSb1-x)2(Te ySe1-y)3, обладающих низкой электропроводностью (порядка 1000 Ом·см-1)

Изобретение относится к способам резки хрупких кристаллических неметаллических материалов, используемых, в частности, для получения ветвей термоэлементов
Изобретение относится к электроэрозионной обработке металлов, в частности к изготовлению сложнопрофилированных изделий из фольги, применяемых в конструкциях электронной техники, таких как рамочные контактные элементы для корпусов микросхем, экраны СВЧ-блоков, элементы антенно-щелевых решеток

Изобретение относится к области обработки металла, в частности к устройствам для электроэрозионной резки металла проволочным электродом-инструментом
Наверх