Способ изготовления порошкового текстурованного магнита

 

Сущность изобретения: выплавляют сплав редкоземельных металлов с 3d-металлом, затем сплав дробят и проводят размол до получения суспензий в этиловом спирте при отношении объема порошка к объему спирта 1 : 3, суспензию подвергают ультразвуковому диспергированию с частотой 19 - 25 кГц с одновременным наложением ориентирующего магнитного поля в течение 15 - 30 с, прессование порошка осуществляют под давлением 0.5-2.0 т/см2 в магнитном поле напряженностью 15 - 20 кЭ. 1 табл.

Изобретение относится к порошковой металлургии, в частности к способам получения постоянных магнитов из сплавов на основе редкоземельных металлов и кобальта.

Известен способ получения порошковых текстурованных магнитов, включающий получение материала и формования порошковых брикетов путем прессования с одновременным наложением текстурующего магнитного поля, спекание и температурную обработку.

Недостатком этого способа является несовершенство магнитной текстуры получаемых брикетов, приводящее к снижению их остаточной индукции, уменьшению прямоугольности петли гистерезиса и максимального энергетического произведения.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ изготовления постоянных магнитов на основе РЗМ, который включает выплавку сплава РЗМ-3d металл, дробление этого сплава, получение порошка измельчением в спирте, прессование порошка под давлением в магнитном поле, перпендикулярном направлению прессования, спекание в защитной атмосфере.

Недостатком известного способа является наличие в порошке РЗМ-3d металл конгломераторов, состоящих из слипшихся частиц с произвольной ориентацией векторов осей легкого намагничивания. Вследствие этого текстурующее магнитное поле не обеспечивает создание совершенной текстуры, так как ориентированию частиц в конгломератах препятствуют силы взаимного трения, возрастающие при наложении внешнего поля из-за магнитостатического воздействия (взаимного притяжения) между частицами. Это приводит к снижению остаточной магнитной индукции.

Задачей предлагаемого изобретения является увеличение остаточной магнитной индукции магнитов из порошка сплава РЗМ с 3d-металлами.

Решение поставленной задачи достигается тем, что предложен способ изготовления порошкового текстурованного магнита на основе сплава редкоземельного металла с 3d-металлом, включающий выплавку сплава, его дробление, размол в спирте, прессование полученного порошка в магнитном поле, перпендикулярном направлению прессования и последующее спекание в защитной атмосфере. При проведении размола для получения суспензии используют этиловый спирт при отношении объема порошка к объему спирта 1:3 суспензию подвергают ультразвуковому диспергированию с частотой 19-25 кГц с одновременным наложением ориентирующего магнитного поля в течение 15-30 с, прессование порошка осуществляют под давлением 0,5-2,0 т/см2 в магнитном поле напряженностью 15-20 кЭ.

Эффективность такой дополнительной обработки заключается в том, что после диспергирования порошка в суспензии его оседание и повторное образование конгломератов происходит непроизвольно, а в условиях ориентирования внешним полем. В результате образуются конгломераты частиц, которые имеют преимущественную ориентацию, сохраняющуюся при дальнейших операциях прессования в магнитном поле, что способствует получению более совершенной текстуры конечного продукта, обеспечивает увеличение остаточной магнитной индукции.

Для достижения положительного эффекта достаточно использование ориентирующих полей напряженностью 15-20 кЭ, так как после диспергирования частицы изолированы друг от друга, их ориентации не препятствуют силы взаимного трения. Использование ориентирующих магнитных полей 15-20 кЭ доводит частицы до магнитного насыщения, позволит получить после диспергирования суспензии порошок, обладающий пренебрежительно малой остаточной намагниченностью. Это способствует сохранению ориентации частиц в конгломератах, так как исключает тенденцию к образованию замкнутых по магнитному потоку конфигураций частиц, которые имели бы место в случае намагниченного порошка.

Кроме того, облегчается последующая процедура формования брикетов, поскольку намагничивание затрудняет операции дозирования навесок и заполнение пресс-форм.

Отличительный признак "при проведении размола для получения суспензии используют этиловый спирт при отношении объема порошка к объему спирта 1:3" необходим для обеспечения условия свободной ориентации частиц. Отношение объема порошка к объему спирта 1:3 установлено экспериментально.

Отличительный признак "суспензию подвергают ультразвуковому диспергированию частотой 19-25 кГц с одновременным наложением ориентирующего магнитного поля в течение 15-30 с" необходим для обеспечения необходимой однородности суспензии и для достижения максимально полной ориентации оси легкого намагничивания (ОЛН) частиц вдоль направления текстурующего поля в суспензии.

Отличительный признак "прессование порошка осуществляют под давлением 0,5-2,0 т/см2 в магнитном поле напряженностью 15-20 кЭ" необходим для достижения максимально полной ориентации ОЛН частиц относительно оси текстуры образца в процессе прессования.

Совокупность вышеперечисленных признаков, расположенных в отличительной части формулы предлагаемого изобретения, позволит решить задачу, заключающуюся в повышении остаточной магнитной индукции порошкового текстурованного магнита.

П р и м е р 1 (для закритических параметров). В индукционной печи в атмосфере аргона производили выплавку соединения SmСo5, имеющего состав: 63 мас.% Co + 37 мас.% Sm.

Слитки разбивали на мелкие куски, размалывали в тонкие порошки (с размером частиц 3-5 мкм) в защитной среде этилового спирта. Для этой цели использовали шаровую мельницу. После отделения спиртовой суспензии порошка от мелющих тел, отношение объема порошка к объему спирта в суспензии составляло 1 : 3, ее подвергали ультразвуковому диспергированию частотой 18 кГц в течение 14 с.

После ультразвукового диспергирования полученной суспензии прессовали при давлении 2,1 т/см2 в текстурующем магнитном поле напряженностью 14 кЭ, ориентированном под прямым углом к направлению усилия прессования.

Сформованные предлагаемым способом брикеты спекали в атмосфере аргона при температуре 1130 5оС в течение 40 мин, после чего их охлаждали до комнатной температуры.

П р и м е р 2. Способ изготовления порошкового текстурованного магнита осуществляли в последовательности, изложенной в примере 1.

При этом диспергирование ультразвуком с одновременным наложением ориентирующего магнитного поля осуществляли в течение 15 с. Частота ультразвука составляла 19 кГц. Напряженность текстурующего магнитного поля составляла 15 кЭ. Прессовали при давлении 0,5 т/см2 в поле напряженностью 15 кЭ.

П р и м е р 3. Способ изготовления порошкового текстурованного магнита осуществляли в последовательности, изложенной в примере 1. При этом диспергирование ультразвуком с одновременным наложением ориентирующего магнитного поля осуществляли в течение 25 с. Частота ультразвука составляла 22 кГц. Прессовали при давлении 1 т/см2 в поле напряженностью 17 кЭ.

П р и м е р 4. Способ изготовления порошкового текстурованного магнита осуществляли в последовательности, изложенной в примере 1. При этом диспергирование ультразвуком частотой 25 кГц с одновременным наложением ориентирующего магнитного поля осуществляли в течение 30 с. Прессовали при давлении 2 т/см2 в поле напряженностью 20 кЭ.

П р и м е р 5 (для закритических параметров). Способ изготовления порошкового текстурованного магнита осуществляли в последовательности, изложенной в примере 1. При этом диспергирование ультразвуком частотой 26 кГц с одновременным наложением ориентирующего магнитного поля осуществляли в течение 31 с. Напряженность ориентирующего магнитного поля составляла 21 кЭ. Прессовали при давлении 3 т/см2. Использование ориентирующего магнитного поля напряженностью менее 15 кЭ нельзя вследствие того, что не достигается магнитная текстура.

Использовать ориентирующее поле напряженностью более 20 кЭ нецелесообразно, так как нетехнологично и трудоемко. Прессовать при давлении менее 0,5 т/см2 нельзя, так как при этом не будет прочным брикет. Прессовать при давлении более 2 т/см2 нельзя, так как при этом произойдет задавливание текстуры. Диспергирование ультразвуком частотой менее 19 кГц нельзя, так как не происходит улучшения магнитных свойств из-за недостаточной однородности суспензии. Диспергирование ультразвуком более 25 кГц нетехнологично.

Время диспергирования менее 15 с нежелательно из-за недостаточной ориентации частиц, в результате чего не происходит улучшения магнитных свойств. Время диспергирования более 30 с нежелательно вследствие нетехнологичности.

Изготовление постоянного магнита способом, изложенным в прототипе, осуществляли в следующей последовательности.

В индукционной печи в атмосфере аргона производили выплавку соединения SmCo5, имеющего состав 63 мас.% Co + 37 мас.% Sm.

Литой материал дробили, измельчали в шаровой мельнице в защитной среде этилового спирта, после чего прессовали в ориентирующем магнитном поле 20 кЭ. Давление прессования составляло 1,0 т/см2.

Спрессованные заготовки спекали в атмосфере аргона при температуре 1130 5оС в течение 40 мин, после чего их охлаждали со скоростью 0,25оС/мин от температуры спекания до 850-900оС, выдерживали при этой температуре, затем быстро охлаждали.

Результаты измерений магнитных характеристик магнитов, изготовленных предлагаемым способом в сравнении с известным приведены в таблице.

Как видно из приведенных в таблице данных, эффект предлагаемого способа заключается в увеличении остаточной индукции.

Как показывают результаты измерений, приведенные в таблице, остаточная магнитная индукция магнита, изготовленного предлагаемым способом, выше остаточной магнитной индукции магнита, изготовленного известным способом в среднем на 3 - 5% при сохранении коэрцитивной силы.

Эти преимущества обеспечивают повышение рабочих характеристик устройств, применяющих эти материалы.

Использование предлагаемого изобретения позволит: повысить КПД электротехнических устройств, использующих эти материалы, повысить их производительность: - улучшить технические параметры; - уменьшить габариты и вес; - экономить используемые дорогостоящие материалы.

Предлагаемое изобретение не является сложным в осуществлении, не требует больших временных затрат, недорого и может быть применимо в промышленности.

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ ПОРОШКОВОГО ТЕКСТУРОВАННОГО МАГНИТА на основе сплавов редкоземельных металлов с 3d-металлом, включающий выплавку сплава, его дробление, размол в спирте, прессование полученного порошка в магнитном поле, перпендикулярном направлению прессования, и последующее спекание в защитной атмосфере, отличающийся тем, что при проведении размола для получения суспензии используют этиловый спирт при соотношении объемов порошка и спирта 1 : 3, суспензию подвергают ультразвуковому диспергированию с частотой 19 - 25 кГц с одновременным наложением ориентирующего магнитного поля в течение 15 - 30 с, прессование порошка осуществляют под давлением 0,5 - 2,0 т/см2 в магнитном поле напряженностью 15 - 20 кЭ.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к порошковой металлургии и может найти применение при изготовлении постоянных магнитов из сплавов на основе редкоземельных переходных металлов
Изобретение относится к порошковой металлургии, в частности к способам получения стального порошка из отходов шлифования

Изобретение относится к металлургии, в частности к способам получения карбидов металлов в электропечи

Аттритор // 1818170
Изобретение относится к порошковой металлургии
Изобретение относится к порошковой металлургии, в частности к способам получения стального порошка из отходов шлифования
Изобретение относится к металлургии, в частности к способам переработки дисперсных металлоотходов, и может найти применение в металлургической отрасли промышленности
Изобретение относится к порошковой металлургии алюминия и его сплавов, в частности к способу массового производства деталей холодным прессованием порошков с последующим спеканием заготовок

Изобретение относится к порошковой металлургии, в частности к аппаратам для переработки маслосодержащих отходов, и может найти применение в металлургической, машиностроительной и нефтехимической отраслях промышленности

Изобретение относится к производству ферритовых материалов для СВЧ-техники и может найти применение в различных отраслях приборостроения и радиотехники, в частности в производстве элементов и устройств СВЧ-диапазона - фазовращателей, быстродействующих переключающих приборов с памятью и т

Изобретение относится к металлургии, в частности к получению сплавов на основе молибдена, используемых для изготовления изделий, имеющих резьбовые соединения и функционирующие при высоких температурах, например электродов

Изобретение относится к порошковой металлургии и позволяет получать целевой материал с микротвердостью 2200-2300 кг/мм2 и прочностью 3,4 кгс/зерно для фракции 630/500 за счет использования шихты, содержащей компоненты, мас

Изобретение относится к технологии ферритовых материалов и может быть использовано при получении пресс-порошков из исходных ферритообразующих оксидов металлов распылительной сушкой суспензий

Изобретение относится к порошковой металлургии, в частности к изготовлению пористого проницаемого материала самораспространяющимся высокотемпературным синтезом

Изобретение относится к машиностроению и может быть использовано для изготовления электронагревательного слоя методом ионно-плазменного напыления в различной бытовой электронагревательной технике, в частности в утюгах, в посуде с электронагревом и т.д
Наверх