Способ лазерной обработки крупнозернистой электротехнической анизотропной стали толщиной 0,15 - 0,30 мм

 

Использование: для термической обработки электротехнической стали. Сущность изобретения: для улучшения магнитных свойств крупнозернистой электротехнической анизотропной стали толщиной 0,30 - 0,15 мм поверхность обрабатывают лазерным излучением в режиме модулированной добротности с частотой 3,0 кГц - 1,0 МГц и средней плотностью мощности воздействия 2102-109 Вт/см2 , при этом следы воздействия лазерного излучения представляют собой дорожки из пятен диаметром 0,01 - 1,00 мм. 2 табл.

Изобретение относится к черной металлургии, в частности к изысканию новых технологических способов термической обработки электротехнической стали.

Известен способ электролазерного нанесения дорожек на листы из электротехнических сталей с целью снижения удельных магнитных потерь.

Недостаток известного способа заключается в малой производительности и низкой надежности.

Известен способ обработки листовой электротехнической стали непрерывным лазерным излучением, наиболее близкий по технической сущности и достигаемому эффекту к заявляемому способу (прототип).

Недостатком известного способа является ухудшение магнитной индукции В100 наряду с достигаемым положительным эффектом уменьшения удельных потерь. Причина ухудшения магнитной индукции В100 связана со структурными изменениями в тонком поверхностном слое стали под воздействием непрерывного лазерного излучения, вследствие нагрева поверхностного слоя металла по всей длине и ширине дорожки непрерывного лазерного воздействия.

Целью изобретения является улучшение магнитных свойств снижение магнитных потерь при уменьшении отрицательного влияния лазерного излучения на магнитную индукцию В100.

Цель достигается обработкой поверхности электротехнической стали лазерным излучением в режиме модулированной добротности с частотой модуляции 0,3 кГц...1,0 мГц и средней плотностью мощности 2 102...109 Вт/см2. Применение такого типа излучения позволяет перейти от непрерывного к импульсному воздействию лазерного излучения на поверхностные слои стали. Применение режима модулированной добротности позволяет создавать крутые фронты нарастания интенсивности излучения, что, сокращая промежуток времени воздействия лазерного излучения в заявляемом изобретении, обеспечивает высокую локальность лазерной обработки поверхностного слоя стали, т.е. малую протяженность зоны термического влияния лазерного излучения в режиме модулированной добротности. В этом случае уменьшается негативное влияние лазерного излучения на изменение магнитной индукции В100. Кроме того, экспериментально доказано, что в результате применения лазерной обработки в режиме модулированной добротности заданный эффект дробления основных 180-градусных доменных областей достигают при меньшей средней мощности излучения лазера по сравнению с лазером непрерывного действия. Для лазерной обработки в режиме модулированной добротности могут быть применены лазеры с изменением мощности их излучения в широком диапазоне от 0,01 до 10 кВт, что позволяет в зависимости от мощности лазерного излучения изменять скорость лазерной обработки в режиме модулированной добротности в широких пределах 0,01-10,0 м/с. После лазерной обработки в этих случаях на поверхности стали остаются дорожки из точек. Обработку лучом лазера можно проводить под любым углом к поверхности обрабатываемой стали, но предпочтительно под углом 90о. Ширину (расстояние) между дорожками задают в каждом конкретном случае.

Лазерную обработку в режиме модулированной добротности проводили в лабораторных условиях на полосовых образцах крупнозеренной электротехнической анизотропной стали толщиной 0,30-0,15 мм производства НЛМК. Размер полосовых образцов 305х30 мм. Результаты измерения удельных потерь Р1,7/50 стали в зависимости от режимов лазерной обработки приведены в табл. 1 и 2.

Из анализа экспериментальных данных, приведенных в табл. 1 и 2 следует, что опробованные диапазоны изменения удельной мощности (табл. 1) и частоты модуляции (табл. 2) лазерного излучения обеспечили улучшение магнитных свойств, т.е. уменьшения удельных потерь Р1,7/50 стали в результате лазерной обработки ее в режиме модулированного внедрения. Граничные пределы (нижний и верхний) по средней мощности (табл. 1) и частоте модуляции (табл. 2) опробованных режимов лазерной обработки обеспечивают улучшение магнитных свойств крупнозеренной электротехнической анизотропной стали толщиной 0,30-0,15 мм, поэтому могут быть внесены в ограничительную часть формулы изобретения.

Применение в отечественном трансформаторостроении крупнозеренной электротехнической анизотропной стали толщиной 0,30-0,15 мм, обработанной лазерным излучением в режиме модулированной добротности, позволит снизить потери холостого хода (потери Х.Х) в трансформаторах.

Формула изобретения

СПОСОБ ЛАЗЕРНОЙ ОБРАБОТКИ КРУПНОЗЕРНИСТОЙ ЭЛЕКТРОТЕХНИЧЕСКОЙ АНИЗОТРОПНОЙ СТАЛИ ТОЛЩИНОЙ 0,15 - 0,30 ММ, включающий обработку путем воздействия сфокусированным лазерным излучением на поверхность, отличающийся тем, что, с целью улучшения магнитных свойств, воздействие лазерного излучения осуществляют в режиме модулированной добротности с частотой повторения импульсов 3,0 кГц - 1,0 МГц и средней плотностью мощности 2 102 - 102 Вт/см2, при этом следы воздействия лазерного излучения предаставляют собой дорожки из пятен диаметром 0,01 - 1,00 мм.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к металлургии, в частности к технологии производства изотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры

Изобретение относится к металлургии и способам термообработки сплавов с высокой проницаемостью, преимущественно к сплавам пермаллойного класса, легированным тугоплавкими элементами и используемым для головок магнитной записи

Изобретение относится к металлургии и может быть использовано при термической обработке сплавов на основе железа типа сендаст для магнитных головок

Изобретение относится к металлургии, в частности к способам термической обработки дисперсно упрочненных сплавов типа сендаст, предназначенных для сердечников магнитных головок

Изобретение относится к области металлургии и может быть использовано для создания магнитострикционных сплавов

Изобретение относится к способу получения ленты из магнитной стали с ориентированными зернами, имеющей толщину менее 5 мм и содержащей по массовому составу более 2% кремния, менее 0,1% углерода и элементы-ингибиторы вторичной рекристаллизации в соответствующем количестве, причем остальное является железом, получаемой непрерывным литьем на цилиндре или между двумя цилиндрами

Изобретение относится к области металлургии, в частности к получению магнитострикционного материала, обладающего лучшими характеристиками по сравнению с альфарами

Изобретение относится к производству текстурованных электросталей, а именно к получению доменной структуры сталей

Изобретение относится к металлургии, конкретно к производству анизотропной электротехнической стали, применяемой для изготовления магнитопроводов электрической аппаратуры
Изобретение относится к области металлургии, в частности к производству электротехнической холоднокатаной трансформаторной стали
Изобретение относится к металлургии, в частности к прокатному производству, и может быть использовано для производства анизотропной электротехнической стали средней степени легирования в рулонах

Изобретение относится к способу изготовления электротехнической стали с ориентированной структурой с окончательной толщиной полосы в диапазоне от 0,1 до 0,5 мм из плоских заготовок с регламентированным составом сплава
Наверх