Полимерный пьезоэлектрический материал

 

Использование: полимерные пьезоэлектрические материалы используются в качестве электроакустических и электромеханических преобразователей. Сущность изобретения: полимерный пьезоэлектрический материал содержит 400-1200 мас. ч. керамического порошка титаната свинца с добавкой 0,01-5 мас.% оксида марганца, 100 мас. ч. органической полимерной матрицы (полибутадиенхлорид, поливинилхлорид или их смесь), 10-30 мас.ч. пластификатора диэфирного типа и 2,5-16 мас. ч. сшивающего агента (смесь окиси цинка, окиси магния и стеариновой кислоты в соотношении 1:1:0,5 7:7:2 - 2,5-16). Материал обладает высокой эластичностью и способен к переработке методом экструзии. 1 з.п. ф-лы, 2 табл.

Изобретение относится к полимерным пьезоэлектрическим материалам и может быть использовано в качестве электроакустических и электромеханических преобразователей, в том числе под водой и в контакте с биологическими объектами.

Известны пьезоэлектрические материалы, содержащие кварц, сегнетоэлектрическую керамику (цирконат-титанат свинца, ЦТС), поливинилиденфторид (ПВДФ), а также композиционные материалы: ПВДФ с ЦТС, полиэтилен с ЦТС, оксиметилцеллюлоза с ЦТС.

Основные недостатки этих композиций заключаются в низких значениях пьезомодулей всестороннего сжатия (dh, gh), высокой жесткости композиций, вследствие чего их можно перерабатывать только прессованием и возникает большое акустическое сопротивление на границах вода (или биологический объект) композиционный пьезоэлемент.

Наиболее близким к изобретению техническим решением является полимерный пьезоэлектрический материал, который содержит органическую полимерную матрицу в виде полихлоропренового каучука 100 мас.ч. сшивающие агенты 20 мас.ч. Рb3O4, 5 мас.ч. окиси цинка и 0,5 мас.ч. дибензотиазолилдисульфида; пьезоэлектрический керамический порошок РbTiO3 (40-70 об.).

Однако этот материал имеет недостаточно высокие пьезоэлектрические характеристики, малую гибкость и вследствие этого высокое поглощение акустических колебаний на границе материла с водой (при использовании его под водой), что значительно влияет на его пьезоэлектрические характеристики. Этот материал можно перерабатывать только прессованием, что ограничивает производительность при его переработке и не дает возможность получать изделия различной конфигурации (например в виде цилиндров, трубок, оболочек проводов, кабелей и др.).

Кроме того, РbTiO3, используемый в качестве наполнителя, обладает невысоким сопротивлением, значительно отличающимся от сопротивления полимерной матрицы, что препятствует удовлетворительной поляризации частиц РbTiO3, так как в процессе поляризации поле в композите распределяется пропорционально электросопротивлению и объемной доле компонентов.

Сущность изобретения состоит в том, что известная полимерная композиция, содержащая органическую полимерную матрицу, сшивающий агент и пьезоэлектрический керамический порошок на основе титана свинца, дополнительно содержит пластификатор диэфирного типа (например дибутилсебацинат или диоктилфталат), в качестве сшивающего агента используют смесь аксида цинка, оксида магния и стеариновую кислоту в соотношении 1:1:0,5-7:7:2, а керамический порошок содержит 0,01-5 мас. оксида марганца.

В качестве органической полимерной матрицы используют полибутадиенхлорид, поливинилхлорид или их смесь при следующем соотношении компонентов, мас.ч.

Органическая полимерная матрица 100 Пластификатор 10-30 Сшивающий агент 2,5-16 Пьезоэлектрический кера- мический порошок 400-1200 Композиция может дополнительно содержать целевые добавки различного назначения: противостарители, смазки, красители и др.

Пьезоэлектрический керамический материал представляет собой порошок с размером частиц преимущественно 2-15 мкм.

Цель изобретения создание полимерного пьезоэлектрического материала, обладающего высокими пьезоэлектрическими характеристиками в сочетании с высокой гибкостью, что дает возможность использования этого материала под водой, а также способность перерабатывать экструзией, что позволяет повысить производительность и получить изделия различной конфигурации, в том числе протяженных, например в виде лент, трубок, оболочек, проводов и кабелей.

Сущность изобретения поясняется примерами. В табл. 1 представлены составы композиции в соответствии с примерами.

П р и м е р 1. 100 мас.ч. (300 г) полибутадиенхлорида смешивают на вальцах, подогретых до 50оС, с 20 мас.ч. (60 г) дибутилсебацината, 5 мас.ч. окиси цинка (15 г), 3 мас.ч. окиси магния (9 г), 2 мас.ч. стеариновой кислоты (3 г), 670 г (2010%) РbTiO3[MnO]y (2 мас.) в течение 16 мин. После этого смесь экструдируют через щелевую головку с температурой 40-60оС в лист шириной 60 мм и толщиной 1 мм. Вулканизацию проводят в термостате в течение 30 мин при 150оС. Из полученного листа вырезают образцы для определения физико-механических испытаний.

Полученный после экструзии и вулканизации лист помещают между прямоугольными электродами размером 40х40 мм из латуни, обернутыми алюминиевой фольгой, и помещают в термостат. Поляризацию проводят при 60оС в течение 30 мин и постоянном напряжении 10 кВ (напряженность поля 100 кВ/см). Из поляризованной части пластины вырезают образцы диаметром 25 или 10 мм, на обе стороны которых наносят электроды из аквадага (коллоидного графита).

Измерение диэлектрических и пьезоэлектрических характеристик проводят известными методами при частотах 1 кГц (диэлектрические измерения) и 30 Гц (пьезоэлектрические измерения).

Физико-механические характеристики определяют по ГОСТ 263-75, диэлектрическую проницаемость и tg по ГОСТ 22372-71 при частоте 1 кГц, пьезомодуль d33 при статическом сжатии и dh при воздействии акустических волн с частотой 30 Гц в камере методом сравнения с образцовым микрофоном с известной чувствительностью (мВ/Па).

Как следует из табл. 2, задача, поставленная изобретением, достигнута. В сравнении с прототипом, получен материал, обладающий более высокой эластичностью (модуль упругости в примере 1 составляет 1,0 МПа, а в примере 5, наиболее близком к прототипу, 8 МПа), способный к переработке методом экструзии и обладающий пьезомодулем gh на 5% и dh на 13% выше, чем у прототипа (пример 5).

Формула изобретения

1. ПОЛИМЕРНЫЙ ПЬЕЗОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ, содержащий керамический порошок на основе титаната свинца, органическую полимерную матрицу, сшивающий агент, включающий оксид цинка и органический компонент, отличающийся тем, что он дополнительно содержит пластификатор диэфирного типа, керамический порошок содержит 0,01 5 мас. оксида марганца, сшивающий агент содержит стеариновую кислоту и оксид магния при соотношении оксид цинка: оксид магния: стеариновая кислота 1 1 0,5-77 2 и имеет состав при следующем соотношении компонентов, мас.ч.

Указанный керамический порошок 400-1200 Органическая полимерная матрица 100 Указанный сшивающий агент 2,5 16 Пластификатор диэфирного типа 10 30 2. Материал по п.1, отличающийся тем, что он содержит в качестве органической полимерной матрицы полибутадиенхлорид, или поливинилхлорид, или их смесь.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к способам получения керамических материалов и может быть использовано в радиоэлектронной технике при изготовлении пирои пьезоэлектрических преобразователей

Изобретение относится к электронной технике и может быть использовано при изготовлении ультразвуковых преобразователей и пьезоэлектрических трансформаторов

Изобретение относится к керамическим материалам, предназначенным для использования в радиотехнике и электронике, в частности при изготовлении конденсаторов

Изобретение относится к радиоэлектронной технике и может быть использовано в производстве низковольтных и высоковольтных керамических конденсаторов стабильных групп

Изобретение относится к радиоэлектронной технике и может быть использовано в производстве однослойных и многослойных конденсаторов с низкой температурой спекания, с ТКЕ по группе М47

Изобретение относится к радиоэлектронной технике и может быть использовано в производстве однослойных и многослойных керамических конденсаторов с низкой температурой спекания, с ТКЕ по группе МПО

Изобретение относится к составам покрытий футеровки, увеличивающих тепловое излучение кладки, и может быть использовано для электронагревательных печей

Изобретение относится к химической технологии, в частности к способам получения графитовых изделий в отформованном виде, и может быть использовано в химической промышленности для изготовления высокопористых графитовых композиционных материалов, к которым предъявляются требования обеспечения высокой теплоизоляционной стойкости при сохранении прочностных свойств и низкой кажущейся плотности
Изобретение относится к производству оптической керамики и может быть использовано в оптической и ювелирной промышленности

Изобретение относится к производству керамических материалов многофункционального назначения
Наверх