Способ получения каталитического комплекса для очистки дихлорэтана от хлоропрена

 

Использование: получение каталитического комплекса для очистки дихлорэтана от хлоропрена. Сущность изобретения: кубовые остатки производства хлорэтила гидрохлорированием этилена с применением в качестве катализатора хлористого алюминия обрабатывают безводным хлористым алюминием в среде дихлорэтана до полного растворения хлористого алюминия в кубовых остатках при перемешивании реакционной массы, причем применяют соотношение AlCl3 и дихлорэтана, равное 1 1 3. 1 з.п. ф-лы.

Изобретение относится к способу получения каталитического комплекса для очистки дихлорэтана от хлоропрена.

Известен способ получения полихлоропрена полимеризацией хлоропрена в водной эмульсии при температуре 10-40оС в присутствии обычных эмульгаторов, радикальных инициаторов и регуляторов молекулярной массы [1] Известный способ имеет ряд недостатков: трудность выделения и сушки продукта, образование большого количества сточных вод, содержащих вредные вещества, необходимость применения различных инициаторов, эмульгаторов, способ требует применения чистого без примесей хлоропрена, а также имеет низкую степень полимеризации хлоропрена (93-95%).

Известны способы полимеризации хлоропрена путем применения комплексных металлоорганических соединений, а также стереоспецифических катализаторов типа Циглера-Натта. Однако они не дали положительных результатов и привели к образованию нерастворимых, частично циклизованных полимеров с меньшим содержанием хлора, чем в хлоропрене [2] К тому же эти полимеры обладали существенными недостатками, основными из которых являются острый неприятный запах вследствие присутствия димеров хлоропрена и других низкомолекулярных веществ, темный, почти черный цвет. Известна полимеризация хлоропрена с применением каталитических систем реактив Гриньяра TiCl4 и Al(C2H5)3 TiCl4, в результате которой получаются полимеры циклической структуры, причем полученный циклополихлоропрен нерастворим вследствие сшивания цепей [3] Известно, что при полимеризации хлоропрена с применением системы Ti(OBu)4+Al(C2H5)xCl(3-X) образуется в основном нерастворимый продукт [4] Наиболее близким по технической сущности к предлагаемому является способ получения каталитического комплекса Al(i-Bu)3 диацетилацетонат кобальта в растворителе [5] по которому в реактор загружают триизобутилалюминия, диацетилацетона кобальта в бензол. Процесс получения комплекса проводится при нагревании реакционной массы до 50оС и перемешивании в течение 30 мин. При последующей загрузке в охлажденный раствор комплекса перегнанного хлоропрена и его полимеризации в течение 12 ч при 50оС получают полимер, выход которого составляет около 86% Недостатками известного способа является низкая степень полимеризации, необходимость применения чистого свежеприготовленного хлоропрена, применение огне- и взрывоопасного триизобутилалюминия и необходимость выделения полимера из бензола метанолом или этанолом с последующей промывкой полихлоропрена теми же растворителями.

Целью изобретения является получение каталитического комплекса для очистки дихлорэтана от хлоропрена, содержащегося в количестве 10-20 мас. в сжигаемой в настоящее время смеси хлоропрена и дихлорэтана, и представляющего собой отход производства винилхлорида методом высокотемпературного дегидрохлорирования дихлорэтана (крекингом дихлорэтана), без предварительного их разделения и очистки от примесей.

Поставленная цель достигается тем, что кубовые остатки производства хлорэтила гидрохлорированием этилена с применением в качестве катализатора хлористого алюминия обрабатывают безводным хлористым алюминием в среде дихлорэтана до полного растворения хлористого алюминия в кубовых остатках при перемешивании реакционной массы, причем применяют соотношение AlCl3:ДХЭ, равное 1: 1-3. Процесс проводят в реакторе под азотной подушкой сначала при самоохлаждении до 14оС и выделения растворенных в исходных кубовых остатках хлорэтила и хлористого водорода, затем нагревают до 50оС для удаления части растворенных хлорэтила и хлористого водорода. Оставшиеся в растворе комплекса растворенные хлорэтил и хлористый водород не влияют на степень полимеризации хлоропрена.

П р и м е р 1. В четырехгорлый плоскодонный снабженный термометром и мешалкой реактор после продувки азотом загружают 21 г дихлорэтана и 21 г порошкообразного безводного хлористого алюминия (соотношение AlCl3:ДХЭ=1:1) включают мешалку и в течение 30 мин непрерывно загружают кубовые остатки производства хлорэтила в количестве 78 г. Реакция протекает при самоохлаждении до 14оС с выделением растворенных в исходных кубовых остатках хлористого водорода и хлорэтила ввиду их нерастворимости в образующемся каталитическом комплексе. Перемешивание продолжают в течение 1 ч до полного растворения хлористого алюминия, поднимают температуру до 50оС для удаления растворенных HCl и хлорэтила, охлаждают до комнатной и сливают для хранения в колбу с двойной пробкой. Количество полученного раствора каталитического комплекса в дихлорэтане 84 г, содержащем 25 мас. хлористого алюминия в пересчете только на свежезагруженный хлористый алюминий.

П р и м е р 2. По условиям примера 1, но количество дихлорэтана для получения раствора комплекса берут 63 г и получают раствор комплекса с содержанием 16,66 мас. AlCl3 в пересчете только на свежезагруженный (соотношение AlCl3:ДХЭ 1:3).

По примерам видно, что дальнейшее разбавление комплекса дихлорэтаном нецелесообразно по соображениям повышения тепловых затрат на отгонку дихлорэтана, а снижение степени разбавления менее 1:1 также нежелательно ввиду возможности образования нерастворимых полимерных частиц.

П р и м е р 3. В четырехгорлый плоскодонный снабженный термометром и мешалкой реактор, помещенный в водяную баню, после продувки азотом загружают 100 мл (116 г) легкой фракции состава, мас. 1,2-дихлорэтан 83; 1,1-дихлорэтан 1,6; хлоропрен 11,1.

Сумма примесей (хлорметил, хлорэтил, метиленхлорид, четыреххлористый углерод, тяжелые примеси и неидентифицированные примеси) 4,3. Температуру в реакторе при включенной мешалке доводят до 23оС и загружают единовременно 2 г раствора каталитического комплекса в дихлорэтане, содержащем 25 мас. хлористого алюминия в расчете на свежезагруженный хлористый алюминий. Процесс полимеризации хлоропрена проводят при температуре не более 35оС в течение 3 ч. Затем при перемешивании проводят отгонку дихлорэтана до достижения температуры в реакторе 100оС и дополнительно продувают азотом в течение 5 мин. В кубе остается жидкий при 100oС полихлоропрен, содержащий следы дихлорэтана и хорошо растворяющийся в этилацетате, толуоле, бензине, ксилоле и других растворителях. Полученный отгон имеет состав, мас. 1,2-дихлорэтан 96,25; 1,1-дихлорэтан 1,81; хлоропрен 0,01; сумма примесей 1,93. Количество отгона 100,3 г. Выход 1,2-дихлорэтана 99,64% Степень очистки дихлорэтана от хлоропрена 99,8% Снижение суммы примесей в 2,2 раза.

Формула изобретения

1. СПОСОБ ПОЛУЧЕНИЯ КАТАЛИТИЧЕСКОГО КОМПЛЕКСА ДЛЯ ОЧИСТКИ ДИХЛОРЭТАНА ОТ ХЛОРОПРЕНА, отличающийся тем, что кубовые остатки, образующиеся в производстве хлорэтила гидрохлорированием этилена с применением в качестве катализатора хлористого алюминия, обрабатывают безводным хлористым алюминием в среде дихлорэтана до полного растворения хлористого алюминия в кубовых остатках при перемешивании реакционной массы при массовом соотношении AlCl3/ДХЭ 1(1 3).

2. Способ по п.1, отличающийся тем, что процесс сначала проводят при самоохлаждении до 14oС, а затем нагреве до 50oС.

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 05.03.2010

Дата публикации: 10.12.2011




 

Похожие патенты:

Изобретение относится к катализатору получения изобутена путем дегидроизомеризации н-бутана, способу его получения и к способу использования указанного катализатора

Изобретение относится к каталитическому получению монооксида азота с высокой селективностью и может быть использовано в электронной промышленности, а также найти применение для переработки побочно образующихся в производстве гидроксиламинсульфата и азотной кислоты, разбавленных водных растворов азотной кислоты

Изобретение относится к восстановленным каталитическим композициям и способам получения восстановленных медьсодержащих катализаторов и может быть использовано в процессе каталитической гидрогенизации в паровой форме органических кислородсодержащих соединений, в частности, для гидрогенизации сложных эфиров

Изобретение относится к производству катализаторов для гидроочистки нефтяных дистилляторов

Изобретение относится к катализаторам для окисления о-ксилола во фталевый ангидрид в организованном кипящем слое и способу их приготовления

Изобретение относится к химической отрасли, в частности к составу катализаторов, и может быть использовано для превращения синтез-газа в спирты и углеводороды
Изобретение относится к получению мономера винилхлорида и катализатору для каталитического получения мономера винилхлорида из потоков, содержащих этилен
Изобретение относится к химии гетероциклических соединений серы, а именно к способам получения тиофена из продуктов нефтепереработки, и может найти применение в химической промышленности
Изобретение относится к каталитической системе и жидкофазному способу получения метанола из синтез-газа

Изобретение относится к получению ненасыщенных углеводородов, к катализатору селективного гидрирования и к способам его получения и применения. Описана композиция, содержащая экструдированную неорганическую подложку, содержащую оксид металла или металлоида, и по меньшей мере один каталитически активный металл группы 10. Экструдированная неорганическая подложка имеет поры, общий объем пор и распределение пор по размерам; при этом профиль распределения пор по размерам имеет по меньшей мере два пика диаметров пор, каждый пик имеет максимум; при этом первый пик имеет первый максимум диаметров пор, составляющий более чем 1000 нм до 6000 нм, а второй пик имеет второй максимум диаметров пор, составляющий менее чем примерно 120 нм; и примерно 15% или более от общего объема пор экструдированной неорганической подложки попадают в диапазон первого пика диаметров пор. Композиция имеет общий объем пор 0,1-0,6 см3/г. Технический результат – хорошая активность и повышенная селективность катализатора. 17 н. и 55 з.п. ф-лы, 8 ил., 3 табл., 2 пр.

Изобретение относится к области производства катализаторов, в частности медь-цинк-алюминиевых катализаторов для низкотемпературного синтеза метанола и низкотемпературной конверсии моноксида углерода
Наверх