Способ определения тяжелых металлов в воде

 

Использование: определение тяжелых металлов в водах при контроле качества питьевых вод и мониторинге водного бассейна. Сущность изобретения: введение в анализируемую пробу органического реагента-комплексообразователя 1-(2-тиазолилазо)-нафтол-2 и выделение комплексов тяжелых металлов с ним на мембранных фильтрах. Положительный эффект: время анализа сокращается в 3 раза при сохранении высокой чувствительности определения тяжелых металлов. 4 табл.

Изобретение относится к способам определения микроколичеств тяжелых металлов и может быть использовано для анализа поверхностных, подземных и питьевых вод при проведении мониторинга окружающей среды.

Содержание тяжелых металлов (Fe, Co, Ni, Cu, Cd, Zn, Pb) в питьевых и природных водах нормируется на уровне 0,1-0,001 мг/л. Для их систематического контроля необходим многоэлементный, простой, быстрый и недорогой аналитический метод. Этим требованиям отвечает рентгенофлуоресцентный анализ (РФА), позволяющий осуществлять определение одновременно 15-20 элементов с порядковыми номерами 12-90. При анализе вод указанные преимущества РФА могут быть реализованы только в сочетании с соответствующим способом концентрирования, который должен обеспечивать получение твердого концентрата-излучателя с инертной матрицей в виде "тонкого" образца массой не более 5 мг/см2 и коэффициент концентрирования 103-104. При определении микроколичеств тяжелых металлов в водах на выделение и концентрирование элементов затрачивается 2,5-3,0 ч, что в 5-6 раз превышает длительность проведения собственно рентгенофлуоресцентных измерений.

В известных способах [1,2] в анализируемый раствор вводят органический реагент, коллектор и после установления равновесия в системе образующиеся осадки выделяют на ядерных поликарбонатных фильтрах; коллекторами служат избыток реактива или элемент-носитель, специально вводимый в анализируемую пробу. Так, согласно [1] определяемые элементы концентрируют в виде пирролидиндитиокарбаматов, а в качестве коллектора используют пирролидиндитиокарбаматы кадмия и кобальта. Образующуюся суспензию фильтруют через мембранный фильтр Миллипор. Коэффициент концентрирования 2103, продолжительность концентрирования около 2,5 ч, предел обнаружения металлов 1-3 мкг/л при объеме анализируемой пробы 1,0 л. По способу [2] определяемые элементы (Cu, Zn, Mn, Ni, Cr, Hg) выделяют в виде комплексов с 1-(2-пиридилазо)-нафтолом-2, избыток которого служит коллектором; коэффициент концентрирования 4103, продолжительность концентрирования 2 ч, чувствительность определения 1 мкг/л при объеме пробы 1,0 л.

Недостатком указанных способов является большая длительность концентрирования, обусловленная образованием аморфных труднофильтрующихся осадков, а также необходимостью выдерживания проб для достижения равновесия в системе комплексообразователь определяемый элемент коллектор.

Концентрирование с использованием сорбционных фильтров является наиболее простым способом, т. к. осуществляется путем обычного фильтрования. В качестве фильтра-сорбента используют бумагу, пропитанную ионообменными смолами, или различные типы фильтров, содержащих комплексообразующие группы. Такие фильтры не селективны по отношению к ионам кальция и используются только для анализа маломинерализованных вод, а при анализе поверхностных и морских вод кальций предварительно отделяют на ионообменной колонке, что значительно усложняет анализ.

Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ [3] основанный на фильтровании анализируемой пробы через сорбционный фильтр, содержащий 2,2'-диаминодиэтиламиногруппы, привитые на целлюлозные фильтры. По способу [3] определение тяжелых металлов в водах проводят следующим образом. В лабораторных условиях изготавливают сорбционные фильтры путем многостадийной химической обработки целлюлозных фильтров Ватман-41 хлорокисью фосфора (V), диметилформамидом, диаминодиэтиламином. Затем 1,0 л анализируемой воды с pН 7-8 фильтруют через изготовленный сорбционный фильтр со скоростью 1 мл/минсм2. Фильтр высушивают и подвергают рентгенофлуоресцентному анализу. Продолжительность концентрирования 100-110 мин; объем пробы равен 1,0 л при площади рабочей поверхности сорбционного фильтра 10 см2, или соответственно, 0,3 л при площади рабочей поверхности 3 см2. Общее время анализа одной пробы 150-170 мин. Коэффициент концентрирования Fe, Co, Ni, Cu, Zn, Pb составляет 1104, степень извлечения металлов 90-100% Чувствительность определения 0,5-1,0 мкг/л.

Основным недостатком способа [3] является длительность процесса концентрирования; кроме того, сорбционные фильтры, полученные в лабораторных условиях, значительно разливаются по сорбционным свойствам.

Целью изобретения является разработка способа определения тяжелых металлов в воде, в котором дополнительное использование комплексообразователя в сочетании с сорбционным фильтром заявляемой природы обеспечило бы количественное выделение тяжелых металлов при фильтровании водных растворов их комплексов через мембранный фильтр и привело бы к достижению высокой экспрессности и чувствительности определения. Это в свою очередь обеспечит оперативный контроль качества поверхностных, подземных и питьевых вод при проведении мониторинга окружающей среды.

Цель достигается тем, что в способе определения тяжелых металлов в воде, включающем приготовление пробы для рентгенофлуоресцентного анализа методом концентрирования фильтрованием через сорбционный фильтр и измерение интенсивности рентгеновской флуоресценции элементов концентрата, по которой судят о количестве металла, согласно изобретению, предварительно в исследуемый раствор вводят органический реагент 1-(2-тиазолилазо)-нафтол-2, а в качестве сорбционного фильтра выбирают ацетилцеллюлозный или нитроцеллюлозный мембранный фильтр.

При добавлении 1-(2-тиазолилазо)-нафтола-2 (ТАН) в раствор, содержащий микроколичества Fe, Co, Ni, Cu, Zn, Cd, Pb, Mn, образуются комплексные соединения указанных элементов с ТАН. Нами установлено, что при фильтровании этого раствора через ацетилцеллюлозные или нитроцеллюлозные мембранные фильтры последние окрашиваются в коричнево-фиолетовый цвет разной интенсивности в зависимости от концентрации тяжелых металлов в пробе. Поскольку мембранному фильтрованию подвергаются прозрачные растворы, не содержащие взвеси или осадка, имеет место сорбция комплексных соединений металлов с ТАН из растворов поверхностью мембранных фильтров, а не соосаждение, как в [1,2] Полнота выделения тяжелых металлов из раствора не зависит от размера пор фильтра в интервале 0,3-0,9 мкм, а определяется скоростью фильтрования, что подтверждает сорбционный характер концентрирования. Рентгенофлуоресцентное измерение окрашенных мембранных фильтров, а также анализ фильтрата методом атомно-абсорбционной спектроскопии показывают, что на мембране выделяется 91-100% введенных в раствор элементов, т.е. выделение количественное.

Концентрат микроколичеств тяжелых металлов представляет собой тонкий слой на поверхности мембранного фильтра, гладкий, однородный, массой не более 5 мг/см2, что соответствует требованиям "тонкого" образца. Концентрат хорошо удерживается поверхностью мембранного фильтра, не растрескивается и не осыпается при хранении и транспортировке.

Использование вместо ТАН других органических реагентов не позволяет достичь требуемого технического результата. Были опробованы групповые органические реагенты тиоксин и 1-(2-пиридилазо)-нафтол-2 (ПАН), образующие с тяжелыми металлами труднорастворимые в воде комплексные соединения и рекомендованные для концентрирования микроколичеств элементов соосаждением с избытком реагента и последующим выделением осадка на мембранных фильтрах. Выделение тяжелых металлов с помощью указанных реагентов осуществлено нами из водных растворов с концентрацией 50 мкг/л и pН 8,2 при объеме пробы 0,25 л. Установлено, что степень выделения тяжелых металлов с тиоксином составляет 30-70% с ПАН 78-100% а с ТАН 95-100% т.е. в отличие от ТАН, тиоксин и ПАН не выделяют тяжелые металлы количественно.

Принципиально важным для заявляемого способа является выбор сорбционного фильтра. Предварительные опыты проводились с мембранными фильтрами из ацетилцеллюлозы, нитроцеллюлозы, поливинилхлорида, полиамида, лавсана. Эти мембранные фильтры имеют массу менее 5 мг/см2, что соответствует требованиям, предъявляемым к "тонким" образцам. Для сравнения сорбционных свойств материалов мембранных фильтров выполнены следующие опыты: в растворы солей железа, цинка, свинца с концентрацией 20 мкг/л при pН 8,2-9,0 добавляли раствор ТАН и фильтровали с одинаковой скоростью 5 мл/минсм2 через указанные мембраны, после чего проводили рентгенофлуоресцентное измерение содержания тяжелых металлов в концентрате и определяли их степень выделения. Полученные результаты свидетельствуют о том, что количественное выделение металла (Fe, Zn, Pb) происходит на мембранах, изготовленных из ацетилцеллюлозы (Владипор, МФА-МА), нитроцеллюлозы, полиамида, поливинилхлорида. Применение мембран из полиамида и поливинилхлорида не позволяет, однако, проводить фильтрование с постоянной скоростью 5-6 мл/мин2, т.к. со временем скорость фильтрования уменьшается. В связи с этим для фильтрования пробы объемом 0,5 л нужно 1,5-2 ч. Таким образом, поливинилхлоридные и полиамидные мембранные фильтры, хотя и позволяют количественно выделить тяжелые металлы из водного раствора, не обеспечивают экспрессность концентрирования и не могут быть использованы для достижения требуемого технического результата. Ацетил- и нитроцеллюлозные мембранные фильтры позволяют фильтровать раствор с постоянной скоростью, изменение которой можно осуществлять в диапазоне 0,5-20 мл/минсм2.

Для выбора скорости фильтрования были проделаны следующие опыты: к 0,5 л модельной смеси солей (Fe, Co, Ni, Cu, Zn, Cd, Pb) с концентрацией 10 мкг/л каждого элемента добавляли раствор ТАН и фильтровали через ацетилцеллюлозные мембранные фильтры Владипор МФА-МА с размером пор 0,6 мкм со скоростью 1-15 мл/минсм2. Полученные концентраты анализировали рентгенофлуоресцентным методом.

Результаты представлены в табл.1.

Из приведенных данных следует, что скорость фильтрования анализируемых проб через сорбционные фильтры не должна превышать 7,0 мл/минсм2, что соответствует степени извлечения определяемых элементов 91-100% Оптимальной скоростью фильтрования является скорость 6-7 мл/минсм2, при которой время концентрирования тяжелых металлов на мембранном фильтре при объеме пробыm, равном 0,5 л, составляет 20-26 мин.

Увеличение скорости фильтрования анализируемой пробы через сорбционный фильтр в заявляемом способе по сравнению с прототипом [3] оказалось возможным благодаря рациональному сочетанию органического реагента и сорбционного фильтра, обеспечивающему высокую скорость сорбционного процесса при выделении 91-100% тяжелых металлов.

Повышение экспрессности способа концентрирования тяжелых металлов из вод не приводит к снижению чувствительности анализа по сравнению с прототипом [3] Чувствительность определения Fe, Co, Ni, Cu, Zn, Cd, Pb рентгенофлуоресцентным методом в сочетании с предлагаемым способом концентрирования составляет 0,5 мкг/л при объеме пробы 0,5 л.

Способ определения тяжелых металлов в воде реализуется следующим образом: К 0,1-0,5 л анализируемой пробы (объем пробы зависит от содержания в ней тяжелых металлов) прибавляет 0,25%-ный раствор ТАН (ТУ 6-09-05-377-75) в диметилформамиде (ГОСТ 20289-74), устанавливают pН 8,2 0,2 и через 5 мин раствор фильтруют через ацетил- или нитроцеллюлозный мембранный фильтр (ТУ 6-05-1903-81) со скоростью 6-7 мл/минсм2. Рентгенофлуоресцентные измерения проводят на установке "Контроль" (изготовитель СКТБ Института ядерных исследований АН Украины). Управление установкой осуществляется ЭВМ ДВК-3, которая, согласно программе, обрабатывает энергетический спектр, анализирует его и выдает результаты. Время концентрирования определяется объемом анализируемой пробы и составляет 6-24 мин при объемах пробы 0,1 и 0,5 л соответственно.

Пример 1. Для достижения максимальной чувствительности определения анализировали пробу объемом 0,5 л. В 0,5 л питьевой воды, предварительно очищенной от следов тяжелых металлов, введена добавка ГСОРМ-24, обеспечивающая концентрацию 2 мкг/л Fe, Co, Ni и 4 мкг/л Pb. К полученной пробе добавляли 5,0 мл раствора ТАН, устанавливали pН 8,2 и фильтровали через ацетилцеллюлозный мембранный фильтр с размером пор 0,4 мкм со скоростью 7 мл/минсм2. Время концентрирования 24 мин. Результаты анализа концентрата представлены в табл. 2, пример 1. Относительная погрешность определения не превышает 20% Пример 2. Для определения тяжелых металлов на уровне предельно допустимых концентраций достаточно иметь пробу объемом 0,1 л. При этом чувствительность определения составляет 5 мкг/л, а время концентрирования уменьшается до 6 мин.

К 0,1 л бидистиллированной воды, в которую введено по 10 мкг Fe, Co, Ni, Cu, Zn, Pb, что соответствует их содержанию 0,1 мг/л, прибавляли 1,0 мл раствора ТАН, устанавливали pН 8,2, и фильтровали через ацетилцеллюлозный мембранный фильтр с размером пор 0,6 мкм. Время фильтрования 6 мин. Результаты приведены в табл. 2, пример 2. Относительная погрешность измерения массовой концентрации металлов находится в интервале 3-20% Пример 3. К 0,25 л бидистиллированной воды, в которую введено по 5 мкг Fe, Zn, Pb, что соответствует концентрации 0,02 мг/л, прибавляли 2,5 мл раствора ТАН, устанавливали pН 8,2 и фильтровали через нитроцеллюлозный мембранный фильтр с размером пор 0,5-0,7 мкм со скоростью 7 мл/минсм2. Результаты определения приведены в табл. 2, пример 3. Относительная погрешность равна 6-18% Пример 4. Проведено определение тяжелых металлов в двух пробах подземной воды. К 0,5 л пробы добавляли 5,0 мл раствора ТАН, устанавливали pН 8,2, фильтровали через ацетилцеллюлозный мембранный фильтр с размером пор 0,6 мкм со скоростью 7 мл/минсм2. Время фильтрования 21 мин. Результаты анализа приведены в табл. 3 и сопоставлены с данными атомно-абсорбционного определения.

Сопоставление основных химико-аналитических характеристик предлагаемого и известного [3] способов определения тяжелых металлов рентгенофлуоресцентным методом приведено в табл. 4.

Сопоставление предлагаемого способа определения тяжелых металлов с известным [3] показало, что время концентрирования одной пробы сократилось в 5 раз, а общее время анализа в 3 раза. При этом достигается высокая чувствительность определения, равная 0,5 мкг/л одинаковая по способу [3] и заявляемому способу. Кроме того, имеет место упрощение способа концентрирования, т.к. в качестве сорбционного фильтра используются стандартные ацетил- и нитроцеллюлозные мембранные фильтры. Предлагаемый способ определения тяжелых металлов в водах и, в частности, способ концентрирования для рентгенофлуоресцентного анализа может быть использован для массовых анализов при мониторинге окружающей среды.

Формула изобретения

Способ определения тяжелых материалов в воде, включающий приготовление пробы для рентгенофлуоресцентного анализа методом концентрирования фильтрованием через сорбционный фильтр и измерение интенсивности рентгеновской флуоресценции элементов концентрата, по которой судят о количестве металла, отличающийся тем, что предварительно в исследуемый раствор вводят органический реагент 1-(2-тиазолилазо)-нафтол-2, а в качестве сорбционного фильтра выбирают ацетилцеллюлозный или нитроцеллюлозный мембранный фильтр.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к области анализа материалов радиационными методами измерением вторичной эмиссии с использованием нейтронов, а также облучением образца рентгеновскими лучами, и может быть использовано для обнаружения оружия и взрывчатых веществ (ВВ) среди содержимого различных контролируемых предметов (портфели, сумки, радиои видеоаппаратура, баулы, чемоданы, почтовые отправления и т.п.) без их вскрытия

Изобретение относится к аналитической химии, в частности к рентгеноспектральному анализу материалов

Изобретение относится к неразрушающим методам анализа состава материалов с регистрацией флуоресцентного рентгеновского излучения и может быть использовано в любой области науки и техники, где требуется качественное и количественное определение содержания химических элементов

Изобретение относится к области неразрушающего контроля материалов и изделий, конкретнее к радиационной дефектоскопии, и может быть использовано для обнаружения малоконтрастных дефектов с помощью рентгеновских флюороскопов

Изобретение относится к рентгеновским поляризационным спектрометрам (РПС) для рентгенофлуоресцентного анализа веществ

Изобретение относится к области исследования химических и физических свойств веществ, в частности, при проведении рентгеноспектрального анализа руд после их кислотного разложения и экстракции определяемых элементов

Изобретение относится к измерительной технике и предназначено для контроля толщины лент, полотен и т.п

Изобретение относится к области неразрушающего контроля материалов и изделий, а именно к устройствам рентгеновской и изотопной дефектоскопии объектов, находящихся в труднодоступных полостях
Наверх