Способ получения активированного угля

 

Частицы сополимера стирола и дивинилбензола сульфируют концентрированной серной кислотой, переводят в гелевую форму, подвергают жидкофазному окислению кислоpодом с приспособлением 0,3-0,5 мас.% кислорода, обезвоживают и удаляют механически разрушенные частицы. Полученные частицы подвергают пиролизу и активации водяным паром. 1 табл.

Изобретение относится к технике получения углеродных материалов, в особенности к способам получения активированного угля с использованием парогазовых активирующих агентов.

Прототипом изобретения является способ получения активированного угля, включающий сульфирование частиц сополимера стирола и дивинилбензола концентрированной серной кислотой, их пиролиз и активацию водяным паром [1] Предусмотренность согласно указанному способу прямого маломодификационного преобразования сульфированных частиц в целевой угольный продукт не позволяет повысить степень полезного использования применяемого сырья.

Сущность изобретения состоит в том, что в способе получения активированного угля, включающем сульфирование частиц сополимера стирола и дивинилбензола концентрированной серной кислотой, их пиролиз и активацию водяным паром, предусмотрено после сульфирования осуществлять перевод частиц в гелевую форму. Далее осуществляют их жидкофазное окисление кислородом с присоединением 0,3-0,5 мас. кислорода. После окисления осуществляют обезвоживание и удаление механически разрушенных частиц.

Сущность изобретения иллюстрируется примерами реализации способа.

Пример 1. Для обеспечения регламентируемого течения реализуемого технологического процесса произвели сульфирование используемых в качестве сырья частиц сополимера стирола и дивинилбензола, в частности стирола, соединенного с 8 мас. н-дивинилбензола. Взятый сополимер обладал следующими характеристиками: температура размягчения 99oC температурный коэффициент линейного расширения - 8310-61/oC прочность при растяжении 55,1 Мн/м2 модуль эластичности 0,17 н/м2 твердость (по Роквеллеру) 93 ед.

относительное удлинение 3% (метрич.) размер частиц 1,0-1,2 мм набухаемость 400 мас.

форма частиц сферическая Для обеспечения необходимого сульфирования произвели обработку употребляемого сополимера охлажденной до 5oC концентрированной 87,3 мас. серной кислотой, близкой по всему состоянию к олеуму. Серно-кислотную обработку вели в присутствии катализатора Фриделя/Крафта, в частности, приготовленного на основе хлористого алюминия или сульфата серебра. После сульфирования осуществили перевод частиц в гелевую форму. Для этого частицы привели в контакт с нагретой до 90oC водой, в которой их выдержали до гидратирования каждой из сульфогрупп 4-6 молекулами воды. По приобретению веществом частиц гелевой формы произошло увеличение удельного объема набухшей сополимерной массы до 3,0 мл/г. Затем произвели жидкофазное окисление вещества частиц кислородом с присоединением 0,3 мас. кислорода. Завершив производимое окисление вещества частиц, осуществили обезвоживание массы частиц и ее сушку до 3-5% влажности. Собираемая обезвоженная масса походила по своему состоянию на отработанный катионит марки КУ-2-8. После приобретения массой высушенного состояния произвели удаление из нее разрушенных частиц, имеющих размер менее 0,75 мм. Для этого высушенная масса подверглась просеиванию, затем из нее отдули пылеобразный остаток. Осуществив сбор сохранившихся целыми и сферичными частиц, произвели их пиролиз и активацию водяным паром. Для этого частицы подвергли нагреву с 20 до 890oC со скоростью подъема температуры 300oC/час, производя подачу на них водяного пара с удельным расходом 0,5 кг/часкг сополимера. Затем подъем температуры прекратили и оставили ее на достигнутом уровне в 890oC в течение 6,8 часов.

Характеристики полученного продукта даны в приводимой далее по тексту таблице.

Пример 2. Реализуемый процесс вели при соответствии всех условий примера 1, за исключением того, что жидкофазное окисление вещества частиц используемого сополимера кислородом вели до присоединения 0,5 мас. кислорода.

Пример 3. Реализуемый процесс вели при соответствии всех условий примеру 1 за исключением того, что жидкофазное окисление вещества частиц используемого сополимера кислородом вели до присоединения 0,4 мас. кислорода.

Пример 4. Реализуемый процесс вели при соответствии всех условий примеру 1 за исключением того, что жидкофазное окисление вещества частиц используемого сополимера кислородом вели до присоединения 4,2 мас. кислорода.

Пример 5. Реализуемый процесс вели при соответствии всех условий примеру 3 за исключением того, что сульфирование вещества частиц используемого сополимера вели путем обработки частиц при 20oC смесевым слабомодифицирующим раствором, вмещающим 25 мас. гидроокиси натрия и 10 мас. -хлорэтилсульфоната натрия.

Техническим преимуществом предложенного способа по сравнению с прототипом является предоставление расширенных производственных возможностей.


Формула изобретения

1 Способ получения активированного угля, включающий сульфирование части сополимера стирола и дивинилбензола концентрированной серной кислотой, их пиролиз и активацию водяным паром, отличающийся тем, что после сульфирования осуществляют перевод частиц в гелевую форму, жидкофазное окисление кислородом с присоединением 0,3 0,5 мас. кислорода, обезвоживание и удаление механически разрушенных частиц.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к средствам осуществления технологических процессов, в особенности к способам получения содержащих свободный углерод фильтр-материалов

Изобретение относится к технологии получения углеродных волокнистых адсорбентов (УВА) и может быть использовано в медицине, например, для усиления действия гемо-энтеросорбентов

Изобретение относится к способу получения активированного угля из скорлуп кокосовых орехов

Изобретение относится к способам получения адсорбентов, в частности к получению высокопрочных, малозольных сферических углеродных адсорбентов из синтетических материалов, и может быть использовано в химической, нефтяной, пищевой промышленности и в медицине в адсорбционных процессах при жестких условиях работы шихты при высокой температуре, больших механических нагрузках, в агрессивных средах, в поле ионизирующих излучений, в многоцикловых процессах "сорбция-десорбция", например, при получении питьевой воды в системах жизнеобеспечения космических экипажей путем регенерации воды из влагосодержащих отходов адсорбционным методом, для гемосорбции, для аналитического разделения веществ, быстрого удаления примесей из жидкостей и газов

Изобретение относится к области сорбционной техники и может быть использовано для получения активных углей, применяемых в газоочистке, рекуперации летучих растворителей, водоподготовке и водоочистке, очистке почв, а также противогазовой технике

Изобретение относится к способу получения гранулированного активного угля и может быть использовано в противогазовой и рекуперационной технике, а также в электроугольной и графитовой промышленности

Изобретение относится к области получения адсорбентов, используемых в гидрометаллургии благородных металлов для выделения серебра

Изобретение относится к области получения активных углей из сырья растительного происхождения, а именно из фруктовой и оливковой косточки

Изобретение относится к области производства активного угля для углеродных фильтрующих материалов умеренно-сорбционного типа

Изобретение относится к технологии получения сорбентов на основе углеродсодержащего сырья (в частности, бурых углей), которые могут быть использованы в процессах водоподготовки, например, для очистки питьевой воды от органических соединений и окислов железа, а также в гидрометаллургии для извлечения драгоценных и цветных металлов из растворов

Изобретение относится к углеродным сорбционно-активным волокнам на основе вискозного волокна, которое является исходным материалом для изготовления фильтров для очистки сточных вод, а также для выделения и концентрирования металлов в качестве ионнообменных сорбентов

Изобретение относится к получению активного угля для изготовления ликеро-водочных изделий
Изобретение относится к области получения активного угля с повышенными показателями адсорбционной емкости при очистке водных сред от органических кислот, альдегидов и кетонов
Наверх