Газодинамический подшипник

 

Использование: в машиностроении для трубоагрегатов и высокоскоростных роторных систем. Сущность: газодинамический подшипник содержит электроизолированную от корпуса втулку и электрическую систему искрового разряда. За точкой подвижного контакта поверхностей вала и втулки происходит искровой разряд и формируется зона повышенного давления газа и соответственно отталкивающая сила. Это обеспечивает уменьшение истирания опорных поверхностей на режимах пуска и останова. 3 ил.

Изобретение относится к машиностроению и может быть использовано в высокоскоростных роторных системах.

Известен газодинамический подшипник, содержащий корпус и втулку /1/.

Недостаток известного подшипника заключается в повышенном износе на режимах пуска и останова при ударных нагрузках.

Технический результат изобретения заключается в снижении износа на режимах пуска и останова и при ударных нагрузках.

Это достигается тем, что газодинамический подшипник, содержащий корпус и втулку, снабжен электрической системой, обеспечивающей искровой разряд в зоне подвижного контакта или минимального зазора между опорными поверхностями втулки и вала, при этом втулка электроизолирована от корпуса подшипника.

На фиг. 1 представлен электрогазодинамический подшипник в момент пуска, поперечный разрез; на фиг.2 электрогазодинамический подшипник на основном режиме; на фиг.3 ротор на электрогазодинамических подшипниках.

Электрогазодинамический подшипник /ЭГДП/ содержит корпус 1 и смонтированную в нем на электроизоляторе 2 втулку 3. Подшипник имеет электрическую систему 5, обеспечивающую искровой разряд в зоне подвижного контакта или минимального зазора между опорными поверхностями втулки 3 и вала 4.

При неподвижном вале 4 электрическая система 5 замкнута.

С увеличением скорости вращения происходит подъем вала 4 на газовом слое и цепь размывается. Искровой разряд будет формироваться за точкой подвижного контакта /фиг.1/ или в зоне минимального зазора (фиг.2) между опорными поверхностями втулки 3 и вала 4. В зоне разряда газ не имеет возможности свободно расширяться, поэтому давление в несущем газовом слое будет резко возрастать, создавая подъемную силу и крутящий момент.

Работа электрогазодинамического подшипника осуществляется следующим образом. В момент начала вращения вала включается электрическая система 5. За точкой подвижного контакта поверхностей вала 4 и втулки 3 происходит искровой разряд и формируется зона повышенного давления /фиг.1/. В это время равнодействующая эпюры давлений будет направлена на отрыв вала от подшипника и увеличение крутящего момента на валу. После подъема вала происходит размывание цепи. При этом возможна работа ЭГДП в режиме ограничителя радиальных перемещений вала. При нарастании амплитуды колебаний происходит уменьшение зазора между опорными поверхностями. В точках их наибольшего сближения будет происходить разряд с последующим повышением давления газа в этой зоне и соответственно отталкивающей силы. В данном случае ЭГДП можно рассматривать как адаптивную систему.

Формула изобретения

Газодинамический подшипник, содержащий корпус и втулку, отличающийся тем, что он снабжен электрической системой, обеспечивающей искровой разряд в зоне подвижного контакта или минимального зазора между опорными поверхностями втулки и вала, при этом втулка электроизолирована от корпуса подшипника.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к области машиностроения и может использоваться в различных узлах трения машин и механизмов

Изобретение относится к машиностроению, в частности к опорам скольжения, и может быть использовано в узлах скольжения различных машин

Изобретение относится к радиальным опорным узлам

Изобретение относится к машиностроению для герметизированных гидродинамических подшипников

Изобретение относится к машиностроению и может быть использовано для образования гидродинамического слоя смазки между ограничивающими его рабочими поверхностями подвижных и неподвижных деталей опорного или упорного подшипника

Изобретение относится к общему машиностроению, в частности к самоустанавливающимся сегментным подшипникам, используемым в подшипниковых опорах и узлах механизмов различного назначения

Изобретение относится к машиностроению и может быть использовано в скоростных высоконагруженных устройствах, центробежных компрессорах, насосах, турбинах и других устройствах

Изобретение относится к машиностроению и может быть использовано в высокоскоростных высоконагруженных устройствах: центробежных компрессорах, насосах, турбинах и других устройствах

Изобретение относится к области машиностроения и может быть использовано в опорах валов, эксплуатирующихся в условиях высоких радиальных нагрузок

Изобретение относится к области машиностроения, а именно к упорным подшипникам скольжения с самоустанавливающимися сегментами и может быть использовано в разнообразных отраслях промышленности, и в частности в холодильной технике: для холодильных машин, для работы на маловязких жидкостях, смазываемый маловязкими жидкостями, работающий на хладагентах, работающий в условиях смазки маловязкими жидкостями

Изобретение относится к области автомобиле- и машиностроения

Изобретение относится к машиностроению и может быть использовано в конструкциях быстроходных компрессоров, газовых и паровых турбин насосов и других роторных машин
Наверх