Бездисперсионный атомно-флуоресцентный анализатор

 

Использование: спектральное приборостроение. Сущность изобретения: анализатор содержит модулируемый источник возбуждения флуоресценции, фотоэлектрический приемник с оптической проекционной системой и металлический спиральный атомизатор, оптические оси которых взаимно перпендикулярны. Атомизатор коаксиально помещен в трубку из диэлектрического материала, внутри которой перед спиралью расположены трубки для ввода анализируемого и калибровочного газов, точка пересечения оптических осей расположена на расстоянии от открытого конца атомизатора, равном 1-2 диаметрам его спирали, а длина спирали превышает ее диаметр в 5-10 раз. 1 з.п.ф-лы, 1 ил.

Изобретение относится к спектральному приборостроению и может быть использовано для определения примесей тяжелых металлов в газах.

Известен атомно-эмиссионный спектрометр с герметизированной индуктивно-связанной плазмой [1] применяемый для анализа постоянных и реактивных газов, состоящий из разрядного контейнера, высокочастотного генератора, цепи согласования импеданса, газовой системы, системы охлаждения, изображающих линз, передающей оптики, монохроматора, регистрирующей электроники и IBM PS/2 компьютера. При этом предел обнаружения составляет 2-10 нГ/л.

Недостатком этого спектрометра является сложность и большая стоимость прибора, большая потребляемая мощность, необходимость высокой квалификации обслуживающего персонала.

Наиболее близким к изобретению является бездисперсионный атомно-флуоресцентный анализатор, содержащий модулируемый источник возбуждения флуоресценции в виде лампы ВСБ-2 и фотоэлектрический приемник с оптической проекционной системой (солнечно-слепой ФЭУ-124), оптические оси которых пересекаются под прямым углом, вольфрамовый спиральный атомизатор и систему ввода защитных газов. Точка пересечения оптических осей источника возбуждения и приемника расположена в центре вольфрамового атомизатора, причем оптическая ось приемника перпендикулярна плоскости витков атомизатора [2] Однако данный анализатор не может быть использован для анализа газов из-за особенностей своей конструкции.

Задача изобретения создание простого и неэнергоемкого анализатора примесей тяжелых металлов в газах, обладающего высокой чувствительностью и воспроизводимостью.

Задача решается тем, что в известном бездисперсионном атомно-флуоресцентном анализаторе, содержащем модулируемый источник возбуждения флуоресценции и фотоэлектрический приемник с оптической проекционной системой, оптические оси которых пересекаются под прямым углом, металлический спиральный атомизатор и систему ввода защитных газов, новым является то, что атомизатор коаксиально помещен в трубку из диэлектрического материала, внутри которой спирально расположены трубки для ввода анализируемого и калибровочного газов, плоскость, образованная оптическими осями источника возбуждения и приемника, перпендикулярна оси атомизатора, а точка пересечения этих осей расположена на расстоянии от его открытого конца равном 1-2 диаметра спирали, причем длина спирали превышает ее диаметр в 5-10 раз.

Для увеличения чувствительности анализатора и расширения диапазона анализируемых газов металлическая спираль покрыта слоем углерода толщиной 1-3 мкм.

Предлагаемая совокупность признаков позволяет анализировать примеси тяжелых металлов в газах с пределами обнаружения до 5 нг/л. Причем анализ является прямым, свободным от дополнительных загрязнений из реактивов, экспрессным и непрерывным, неэнергоемким.

Анализ источников литературы показал, что предложенная совокупность является новой и соответствует критерию "изобретательский уровень".

На чертеже представлена блок-схема предлагаемого бездисперсионного атомно-флуоресцентного атомизатора.

Атомизатор содержит модулируемый источник возбуждения флуоресценции, состоящий из безэлектродной газоразрядной лампы 1, генератора модуляции 2 и кварцевой оптики формирования потока возбуждения 3, систему регистрации флуоресценции, состоящую из оптической проекционной системы (объектив 4 и диафрагма 5), фотоэлектрического приемника 6 и регистрирующего устройства 7, атомизатор, состоящий из трубки из диэлектрического материала 9 с помещенной внутри нее металлической спиралью 8 и системой ввода (трубка 10), калибровочного 11 и анализируемого 12 газов. Причем оптические оси источника возбуждения флуоресценции, фотоэлектрического приемника и атомизатора взаимно перпендикулярны (на рисунке ось атомизатора развернута на 90o для удобства изображения). Анализатор работает следующим образом.

Смесь защитного, калибровочного и анализируемого газов проходит через импульсно нагреваемую металлическую спираль 8, где нагревается до температуры атомизации и на выходе атомизатора образуется облако атомного пара примесей. Излучение модулируемого источника 1 возбуждения флуоресценции собирается оптической системой формирования потока флуоресценции 3 и направляется в аналитическую зону атомизатора, находящуюся на его оси на расстоянии 1-2 диаметров спирали от открытого конца трубки. В аналитической зоне атомизатора происходит селективное поглощение света атомами определяемого элемента и его переизлучение (флуоресценция). Часть флуоресценции собирается оптической проекционной системой 4 и через диафрагму 5, отсекающую рассеянное на стенках камеры атомизатора излучение, подается на фотоэлектрический приемник 6. Электрический сигнал с фотоэлектрического приемника 6 подается на вход регистрирующего устройства 7, которое производит его обработку и выдает сигнал, пропорциональный концентрации определяемого элемента. Пример конкретного исполнения. В качестве источника возбуждения флуоресценции 1 использовалась безэлектродная разрядная лампа ВСБ-2 с ВЧ-генератором ППБЛ-3. Атомизатор был выполнен из танталовой проволоки высокой частоты 0,2 мм, диаметр витков спирали 2 мм, длина спирали 10 мм, количество витков 30, помещенный в кварцевую трубу. В качестве фотоэлектрического приемника использовался фотоэлектронный умножитель ФЭУ-130. Аналитические характеристики спектрометра проверялись на примере определения железа в аргоне, с использованием в качестве калибровочного газа смеси пентакарбонила железа с аргоном. Полученный предел обнаружения (ПО) составил 4 нг/л с относительным стандартным отклонением Sr=0,01 при концентрациях больших 30 ПО.

Формула изобретения

1. Бездисперсионный атомно-флуоресцентный анализатор, содержащий модулируемый источник возбуждения флуоресценции и фотоэлектрический приемник с оптической проэкционной системой, оптические оси которых пересекаются под прямым углом, металлический спиральный атомизатор и систему ввода защитного газа, отличающийся тем, что атомизатор коаксиально помещен в трубку из диэлектрического материала, внутри которой перед спиралью расположены трубки для ввода анализируемого и калибровочного газа, и установлен так, что плоскость, образованная оптическими осями источника возбуждения и приемника, перпендикулярна оси атомизатора, а точка пересечения этих осей расположена на расстоянии от его открытого конца, равном 1 2 диаметрам спирали, причем длина спирали превышает ее диаметр в 5 10 раз.

2. Анализатор по п.1, отличающийся тем, что спираль автомизатора покрыта слоем углерода толщиной 1 3 мкм.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способу определения степени загрязненности сточных вод по ХПК и может быть использовано на очистных сооружениях

Изобретение относится к технической физике, а именно к фосфороскопии и фосфоресцентному анализу, и может быть использовано для обнаружения и анализа спектров возбуждения и спектров фосфоресценции, а также для определения количества фосфоресцирующих веществ в биологических и других образцах, в том числе для выявления антител, окрашенных фосфоресцирующими красителями

Изобретение относится к устройствам для оптического спектрального определения элементного состава веществ по спектрам люминесценции кристаллофосфоров и может быть использовано, в частности для определения малых концентраций актинидных элементов в объектах окружающей среды и технологических растворах

Изобретение относится к технике измерения давления газа на поверхность твердого тела, а точнее к технике бесконтактной регистрации давления и концентрации газа по тушению люминесценции индикаторных покрытий и может найти применение для оперативного измерения давления воздуха на исследуемые в аэродинамических трубах модели летательных аппаратов, скоростных автомобилей, винты, лопатки газовых турбин и т.п

Изобретение относится к биофизическим методам выявления и количественного анализа фитотоксических соединений в водных и иных растворах, и может быть использовано в службах охраны природы для оперативного контроля за токсичностью природных и сточных вод, а также в аналитических и контрольно-токсикологических лабораториях для обнаружения и последующего определения содержания химических веществ, обладающих фитотоксической активностью

Изобретение относится к оптическим методам анализа, в частности, к люминесцентным методам

Изобретение относится к экспериментальным методам ядерной физики и может быть использовано при решении различных задач технической физики
Изобретение относится к экспериментальным методам физики и может быть использовано при создании систем маркировки и идентификации контролируемых объектов

Изобретение относится к аналитической химии, а именно к качественному и количественному определению нитропроизводных полициклических ароматических углеводородов (нитро-ПАУ) в сложных смесях и растворах

Изобретение относится к установке контроля для отбора проб и определения наличия некоторых веществ, например остатков загрязнений в емкостях, например, в стеклянных или пластмассовых бутылках

Изобретение относится к медицине, а точнее к области бесконтактной клинической диагностики злокачественных новообразований и области их локализации in vivo в живом организме на основе флуоресценции эндогенных порфиринов

Изобретение относится к области измерительной техники

Изобретение относится к медицинской технике, а именно к спектрофотометрическим приборам для контроля (диагностики) состояния биологической ткани

Изобретение относится к биотехнологии

Изобретение относится к аналитической химии
Наверх