Пневматическое устройство для измерения толщины полимерной пленки

 

Устройство относится к контрольно-измерительной технике и может быть использовано в технологических линиях производства полимерных пленок в качестве датчика контура автоматического регулирования толщины изготавливаемой пленки. Техническая задача изобретения состоит в повышении надежности измерительного устройства. Сущность изобретения состоит в том, что пневматическое устройство для измерения толщины полимерной пленки, содержащее две, опозитно расположенные и имеющие каналы для подвода в них воздуха, пневмокамеры с обращенными друг к другу перфорированными измерительными поверхностями, одна из которых неподвижна, и вычислительный блок определения толщины, отличающееся тем, что оно снабжено соединенными с вычислительным блоком двумя измерителями расхода воздуха, подаваемого в пневмокамеры, и двумя датчиками избыточного давления, размещенными внутри пневмокамер, а вторая пневмокамера установлена неподвижно. Отсутствие в составе измерительного устройства движущихся частей и жесткое закрепление пневматических камер значительно повышают надежность его работы в цеховых условиях. Выдаваемая устройством информация позволяет поддерживать неизменной толщину получаемой пленки, оперативно изменяя скорость вращения вытягивающих валков экструзионной машины. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при производстве полимерных пленок для безконтактного измерения толщины движущейся пленки.

Известно пневматическое устройство для измерения толщины листовых неферромагнитных материалов [1] имеющее два чувствительных элемента с опозитно расположенными соплами, подвижными перпендикулярно к направлению перемещения измеряемого материала, и датчики расстояний между чувствительными элементами и между соплами и измеряемым материалом. Для повышения точности измерений устройство снабжено сумматором показаний датчиков и кольцевыми аэростатическими опорами для чувствительных элементов, охватывающими сопла.

Надежность известного измерительного устройства в производственных условиях очень невелика из-за влияния вибраций на движущиеся части.

Наиболее близким к предлагаемому по технической сущности является пневматическое устройство для измерения толщины листовых материалов [2] содержащее две опозитно расположенные и имеющие каналы для подвода в них сжатого воздуха нижнюю неподвижную и верхнюю подвижную пневмокамеры с обращенными друг к другу перфорированными измерительными поверхностями, одна из которых неподвижна, и вычислительный блок определения толщины.

Изменение толщины материала вызывает соответствующее перемещение верхней пневмокамеры, которое фиксируется вычислительным блоком.

Невысокая надежность этого устройства объясняется наличием подвижного закрепления верхней пневмокамеры.

Техническая задача состоит в повышении надежности измерительного устройства.

Технический результат достигается тем, что пневматическое устройство для измерения толщины полимерной пленки, содержащее две, опозитно расположенные и имеющие каналы для подвода в них воздуха, пневмокамеры с обращенными друг к другу перфорированными измерительными поверхностями, одна из которых неподвижна, и вычислительный блок определения толщины, при этом оно снабжено соединенными с вычислительным блоком двумя измерителями расхода воздуха, подаваемого в пневмокамеры, и двумя датчиками избыточного давления, размещенными внутри пневмокамер, а вторая пневмокамера установлена неподвижно.

Схема измерительного устройства представлена на чертеже.

В составе устройства имеются две пневмокамеры 1 и 2. Внутри пневмокамер установлены датчики 4 и 7 для измерения избыточного давления сжатого воздуха. Расходомеры 3 и 8 измеряют объемный расход воздуха, вытекающего из пневмокамер в зазоры между перфорированными измерительными поверхностями пневмокамер и пленкой 5. Информация о значениях расходов и давлений поступает на вычислительный блок 6.

Устройство работает следующим образом.

Полимерная пленка подается между перфорированными измерительными поверхностями пневмокамер. Под действием образовавшихся в зазорах воздушных прослоек пленка расправляется и ориентируется параллельно перфорированным поверхностям. Причем, толщина зазора между измерительной поверхностью камеры 2 и пленкой, согласно [3] определяется из выражения: где h2 толщина зазора между измерительной поверхностью пневмокамеры 2 и пленкой; Q2 расход воздуха из пневмокамеры 2; K12 коэффициент, зависящий от площади измерительной поверхности пневмокамеры 2 и вязкости воздуха; Pz2 давление в зазоре между измерительной поверхностью пневмокамеры 2 и пленкой; а неизвестное давление Pz2 в воздушной прослойке можно найти, используя формулу Бернулли [3] Pz2= Pk2-K22Q22, (2) где Pk2 избыточное давление в пневмокамере 2; K22 коэффициент, зависящий от общей площади перфорационных отверстий.

Из выражений (1) и (2) получаем расчетную формулу:
Толщина зазора между перфорированной измерительной поверхностью пневмокамеры 1 и пленкой определяется аналогично по формуле

где h1 толщина зазора между измерительной поверхностью пневмокамеры 1 пленкой;
Q1 расход воздуха из пневмокамеры 1;
Pk1 избыточное давление в пневмокамере 1;
K11 коэффициент, зависящий от площади измерительной поверхности пневмокамеры 1 и вязкости воздуха;
K21 коэффициент, зависящий от общей площади перфорационных отверстий.

Вычислительный блок 6 рассчитывает сумму величин воздушных зазоров и определяет толщину пленки вычитанием из известной величины зазора между измерительными поверхностями полученной суммы по формуле (5).


где толщина пленки;
H толщина зазора между измерительными поверхностями.

Отсутствие в составе измерительного устройства движущихся частей и жесткое закрепление пневматических камер значительно повышают надежность его работы в цеховых условиях.


Формула изобретения

Пневматическое устройство для измерения толщины полимерной пленки, содержащее две оппозитно расположенные и имеющие каналы для подвода в них воздуха пневмокамеры с обращенными друг к другу перфорированными измерительными поверхностями, одна из которых неподвижна, и вычислительный блок определения толщины, отличающееся тем, что оно снабжено соединенными с вычислительным блоком двумя измерителями расхода воздуха, подаваемого в пневмокамеры, и двумя датчиками избыточного давления, размещенными внутри пневмокамер, а вторая пневмокамера установлена неподвижно.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и машиностроению и может быть использовано для стабилизации зазора между инструментом, например сварочной головкой, и кромкой изделия

Изобретение относится к области измерительной техники и может быть использовано для контроля толщины тонких протяженных изделий

Изобретение относится к измерительной технике и может быть использовано для измерения межосевого расстояния деталей

Изобретение относится к измерительной технике и может быть использовано для контроля взаимного расположения поверхностей

Изобретение относится к измерительной технике и может быть использовано для контроля взаимного расположения поверхностей

Изобретение относится к измерительной технике и может быть использовано для определения местоположения дефекта покрытия внутренней поверхности трубопровода

Изобретение относится к измерительной технике и предназначено для измерения глухих отверстий малой длины

Изобретение относится к измерительной технике

Изобретение относится к струйной технике и может быть использовано при бесконтактном измерении перемещения при активном и послеоперационном контроле деталей и других изделий способом преобразования измерительного зазора S (расстояние от детали до сопла датчика) в давление

Изобретение относится к измерительной технике и может быть использовано для точных измерений линейных размеров и перемещений деталей

Изобретение относится к области измерительной техники и может быть использовано в машиностроении для контроля линейных размеров

Изобретение относится к измерительной технике и может быть использовано для контроля линейных размеров в машиностроении и приборостроении

Изобретение относится к пневматической измерительной технике и может быть использовано для измерения линейных размеров и погрешностей формы механических деталей

Изобретение относится к пневматической измерительной технике и может быть использовано для измерения линейных размеров

Изобретение относится к измерительной технике и может быть использовано для измерения в широком диапазоне наружных и внутренних размеров деталей и узлов, где требуется высокая точность измерений
Изобретение относится к измерительной технике и может быть использовано для измерения линейных размеров, например для автоматического контроля износа режущей части инструмента, применяемого на многооперационных станках с ЧПУ либо в качестве органа технического зрения робота

Предложены способы и система для измерения расхода входного воздушного потока газовой турбины с использованием инертного газа. Способ измерения массового расхода воздушного потока включает: ввод инертного газа в воздушный поток, при этом ввод инертного газа осуществляют перед фильтром на входе турбины; смешивание газа с воздухом; измерение концентрации упомянутого газа, смешанного с воздухом, в местоположении перед компрессором газовой турбины; запись количества упомянутого газа, введенного в упомянутый воздушный поток, и вычисление массового расхода воздушного потока на основе упомянутой измеренной концентрации газа и записанного количества введенного газа. Система для измерения массового расхода воздушного потока включает: газовую турбину, имеющую вход газовой турбины, фильтр на входе газовой турбины и компрессор, расположенный ниже по потоку относительно фильтра, источник инертного газа для ввода газа перед фильтром на входе турбины, при этом инертный газ вводится в воздушный поток и смешивается с воздухом, прибор для определения концентрации газа, смешанного с воздухом, выполненный с возможностью всасывания смеси инертного газа и воздуха и измерения уровня концентрации инертного газа; и процессор, который принимает результат измерения концентрации газа от упомянутого прибора для определения концентрации газа в местоположении перед компрессором газовой турбины и вычисляет массовый расход воздушного потока на основе упомянутой измеренной концентрации. Технический результат – повышение точности измерения расхода входного воздушного потока газовой турбины. 2 н. и 6 з.п. ф-лы, 3 ил.
Наверх