Способ получения особочистой порошковой меди

 

Способ используют при извлечении меди из вторичного сырья. Медьсодержащее сырье обрабатывают раствором, содержащим моноэтаноламин, гидрокарбонат аммония и основной карбонат меди. Концентрация ионов двухвалентной меди в растворе 15 - 20 г/л. Температура процесса растворения 69 - 80oС. Растворение проводят с подачей воздуха. После растворения меди проводят термическое разложение при температуре 123 - 145oC. Одновременно с разложением проводят отгонку моноэтаноламина. Отмывку порошка меди проводят обескислороженной водой с добавлением гидразина. 1 з.п.ф-лы.

Изобретение относится к области гидрометаллургии цветных металлов, в частности к технологии извлечения меди из вторичного сырья.

Известен способ получения порошка меди (авторское свидетельство СССР N 1082567 A), включающий термическое разложение смешанных комплексов солей меди в присутствии моноэтаноламина, причем в качестве смешанных комплексов используют комплексы сульфата или нитрата меди.

Недостатком указанного метода получения медного порошка является то, что метод требует предварительной подготовки сырья в виде высушивания соли меди, после чего ее растворяют в избытке чистого моноэтаноламина, что в свою очередь удорожает и усложняет технологический процесс. Также для проведения термического разложения данного комплекса требуется поддержание в реакционном объеме повышенной температуры, равной 145oC, что требует повышенных энергетических затрат.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения порошка меди (патент ГДР N 357165 A3), включающий растворение или суспензирование соединения меди с органическим восстановителем в органическом растворителе или комплексообразователе общей формулы RX[CH2CH2Y]n - [chr1(CH2)aZ]mH, где X, Y, Z = O, NH или NR2, причем по меньшей мере гидроксильная группа содержится в молекуле; R, R1, R2 - водород, алкил (C6H13), циклоалкил (C6H11); a = 1 - 3; m = 0 - 10; n = 1 - 20.

После этого полученный комплекс подвергается термическому разложению при температуре между 150oC и температурой кипения комплексообразователя или растворителя. Выпавший в осадок порошок меди промывается метанолом.

К недостаткам данного метода можно отнести следующие моменты. Во-первых, необходима предварительная подготовка сырья в виде ацетата меди, который впоследствии растворяется в смеси редких растворителей - триэтиленгликоля и диэтаноламина. Это обусловливает сложность технологического процесса. Во-вторых, раствор подвергают обработке при температуре 200oC, что обусловливает повышенные энергетические затраты.

Согласно способу получения порошковой меди, включающему растворение медьсодержащего сырья, термическое разложение полученных комплексов меди, отмывку порошка меди, растворение проводят раствором, содержащим моноэтаноламин, гидрокарбонат аммония и основной карбонат меди с концентрацией ионов двухвалентной меди 15 - 20 г/л при температуре 69 - 80oC с подачей воздуха, разложение ведут при температуре 123 - 145oC с одновременной отгонкой моноэтаноламина.

Аналогично, согласно способу получения порошковой меди, включающему перечисленные операции в той же последовательности, отличающимся тем, что отмывку порошка меди ведут обескислороженной водой с добавлением гидразина.

Сущность изобретения заключается в том, что процесс осуществляется путем последовательного выполнения следующих операций.

Приготовление исходного раствора происходит путем смешивания компонентов в следующих соотношениях (на 1 л) : 750 мл воды 250 мл моноэтанолами. В данной смеси растворяются: 100 г гидрокарбоната аммония (NH4HCO3) и столько основного карбоната меди (CuCO3) Cu(OH)2), чтобы концентрация ионов Cu2+ составляла 20 г/л.

Данное соотношение реагентов обеспечивает максимальную скорость растворения меди. После чего металлическую медь подвергают растворению в данном растворе при 69 - 80oC, интенсивном перемешивании и барботаже воздуха. Причем в случае подачи воздуха в нижнюю точку реакционного объема можно обойтись и без перемешивания. Температура 69 - 80oC является оптимальной, так как при более низкой температуре замедляется реакция растворения и при более высокой быстро испаряется моноэтаноламин. Растворение ведут до достижения концентрации ионов Cu2+ в 75 - 85 г/л. При дальнейшем повышении концентрации замедляется скорость процесса растворения, а при ведении процесса до более низких концентраций снижается его экономическая эффективность. После этого продукционный раствор подвергают термическому воздействию, нагревая его до 123 - 145oC, чем добиваются термолиза смешанного комплекса меди. Причем данную операцию можно совместить с отгонкой воды и непрореагировавшего моноэтаноламина с целью возвращения их в процесс. Образовавшиеся частицы порошка меди, взвешенные в продуктах разложения комплекса, промывают обескислороженной водой с добавкой гидразина для предотвращения окисления меди. После чего порошок в виде пасты под слоем обескислороженной воды подлежит сушке и затариванию.

Пример 1. Для получения смешанного комплекса меди с моноэтаноламином смешивают 250 мл моноэтаноламина и 750 мл воды и в них растворяют 100 г гидрокарбоната аммония и 35 г основного карбоната меди. После чего в данный раствор помещают 50 г медной стружки с содержанием меди 98,7 мас.% и нагревают реакционную смесь до 69 - 80oC, барботируя через него воздух.

После полного растворения меди полученный раствор смешанного комплекса меди нагревают до 130oC. Полученную в результате термолиза вязкую массу охлаждают без доступа воздуха, промывают дистиллированной обескислороженной водой с добавкой гидрата гидразина на керамическом фильтре или в пульсационной колонне при противотоке воды (расход воды составляет 50 л на килограмм порошка меди), причем при промывке порошка в пульсационной колонне проводят классификацию порошка по крупности частиц, сушат порошок в вакуумном сушильном шкафу при температуре 80 5oC в течение 2 часов. Выход металлической меди (порошка) 73,6 г, что составляет 92%. Содержание меди в порошке 99,99 мас.%.

Пример 2. Для получения смешивают 250 мл моноэтаноламина и 750 мл воды. В них растворяют 100 г гидроксикарбоната аммония. После чего в раствор добавляют 340 мл раствора смешанного комплекса меди, полученного как указано в примере 1 с концентрацией иона Cu2+, равной 80 г в литре. Далее растворение меди, осаждение и промывка медного порошка идет как и в примере 1.

Технологический эффект достигается за счет расширения сырьевой базы, возможности использовать в качестве медного сырья черновую медь, медный шлам, загрязненные медные порошки, существенного упрощения процесса - происходит прямое растворение меди, понижения температуры процесса, из процесса удален взрывоопасный водород, увеличения экологичности процесса - основная масса моноэтаноламина после перегонки возвращается в процесс, экономии ресурсов - в процессе не используются экзотические дорогостоящие реагенты, упрощения аппаратурного оформления процесса - в процессе отсутствуют аппараты под давлением, возможности выпуска широкого спектра порошков, впдлоть до паст. Вышеперечисленные факторы обеспечивают снижение себестоимости продукции.

Формула изобретения

1. Способ получения особочистой порошковой меди, включающий растворение вторичного медьсодержащего сырья, термическое разложение полученных комплексов меди, отмывку порошка меди, отличающийся тем, что растворение проводят раствором, содержащим моноэтаноламин, гидрокарбонат аммония и основной карбонат меди с концентрацией ионов двухвалентной меди 15 - 20 г/л при 69 - 80oС с подачей воздуха, разложение ведут при 123 - 145oС с одновременной отгонкой моноэтаноламина.

2. Способ по п.1, отличающийся тем, что отмывку порошка меди ведут обескислороженной водой с добавлением гидразина.



 

Похожие патенты:

Изобретение относится к области производства многокомпонентных материалов с магнитными свойствами и может быть использовано в лакокрасочной промышленности, в полиграфии, в производстве магнитных носителей информации

Изобретение относится к способам получения порошков, в частности, к способам получения ультрадисперсных порошков металлической меди

Изобретение относится к области неорганической химии и может быть использовано для получения однородных высокодисперсных порошков интерметаллических соединении из гидридообразующих сплавов

Изобретение относится к области порошковой металлургии, в частности к способам получения ультрадисперсных порошков металлической меди, которые могут быть использованы при изготовлении тепло- и токопроводящих композиций, присадок к моторным маслам и т.д

Изобретение относится к порошковой металлургии, в частности к способам получения ферритообразующей шихты для производства магнитомягких ферритов, которые находят применение в телеи радиотехнике

Изобретение относится к технологии получения дисперсного материала стандартных образцов (СО) стапей, применяемых в металлургической промышленности для контроля массовой доли компонентов (состава сплава)

Изобретение относится к технологии получения порошков ферритов и позволяет снизить энергозатраты и упростить способ

Изобретение относится к области порошковой металлургии, в частности к способам получения мелкодисперсных порошков металлов группы платины, которые находят широкое применение в электронной, электротехнической и др

Изобретение относится к нанотехнологии и к высокодисперсным материалам, в частности к металлсодержащим материалам, и может быть использовано для разработки функциональных элементов в электронике, электротехнике, в оптических и нелинейно-оптических системах и устройствах, магнито-оптических системах, а также для создания новых элементов магнитной памяти и магнитных носителей информации, получения коллоидных частиц для магнито- и электрореологических жидкостей, а также для биомедицинских применений

Изобретение относится к карбонильной металлургии никеля и может быть использовано при производстве карбонильных никелевых порошков, используемых в аккумуляторной промышленности

Изобретение относится к технологии получения субмикронных порошков никеля, широко используемых в электронной промышленности для производства многослойных конденсаторов и для изготовления фильтрующих элементов

Изобретение относится к порошкам серебро-оксид кадмия и способам их получения и может быть использовано в электронике

Изобретение относится к нанотехнологии и наноматериалам и может быть использовано при получении неорганических и органико-неорганических высокодисперсных и наноструктурированных металлсодержащих материалов, металлополимеров и нанокомпозитов
Изобретение относится к порошковой металлургии, в частности к получению карбонильного железа
Наверх