Способ формирования пи-закона регулирования и диагностики автоматической системы

 

Изобретение относится к области автоматического регулирования. Технический результат заключается в повышении качества процессов управления и обеспечении контроля состояния системы. Способ заключается в том, что определяют абсолютное значение входного сигнала, пропорционального ошибке регулирования, сравнивают это значение с пороговым уровнем и, если абсолютное значение входного сигнала не превышает порогового уровня, то интегрируют входной сигнал, в случае превышения абсолютным значением входного сигнала порогового уровня интегрируют разность входного сигнала и сигнала, пропорционального результату интегрирования, входной сигнал суммируют с результатом интегрирования, а сумму масштабируют, при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времена i, i=2,...,n, последующих n-1 превышений, удовлетворяющих условию i Tд, где Тд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n и в случае выполнения одного из этих условий формируют сигнал об аварийном состоянии системы. 2 ил.

Изобретение относится к области автоматического регулирования и предназначено для использования в различных системах автоматики.

Известны способы формирования ПИ-закона регулирования, при которых входной сигнал, пропорциональный ошибке регулирования, интегрируют, результат суммируют с входным сигналом, а суммарный сигнал масштабируют (Ялышев А.У., Разоренов О.И. Многофункциональные аналоговые регулирующие устройства автоматики. - М.: Машиностроение, 1981, с. 76 - 77; А.с. N 475602 (СССР), МКИ G 05 B 11/36, опубл. 1975. Электронный аналоговый пропорционально-интегрально-дифференциальный регулятор/ А.У. Ялышев и др.).

Известные способы обеспечивают формирование регулирующего воздействия для объекта, пропорциональное сумме входного сигнала рассогласования системы и интеграла от него: где kп - коэффициент пропорциональности; ТИ- постоянная времени.

При таком способе обеспечивается быстрая реакция системы на изменение рассогласования за счет постоянной составляющей и высокая точность регулирования в установившихся режимах, обеспечиваемая интегральной составляющей. Однако при управлении инерционными объектами известные способы не обеспечивают высокое качество регулирования в переходных режимах, что проявляется в повышенной длительности колебательных процессов отработки рассогласования. Это объясняется инерционным действием интегратора. Особенно сильное проявление колебательности наблюдается в системах управления при ограниченной мощности исполнительного устройства, т. е. при наличии нелинейности типа "ограничение". В этом случае замедление отработки рассогласования приводит к увеличению выходного сигнала интегратора и его насыщению. В момент достижения ошибкой системы 0 на выходе интегратора оказывается большое напряжение, снижение которого возможно только при изменении знака рассогласования. В результате в системе возникают длительные колебания. При этом регулирующее устройство не обеспечивает контроля состояния системы и формирования сигнала о выходе системы из рабочего режима.

Таким образом, недостатки известных способов формирования ПИ-закона регулирования и диагностики автоматической системы - низкое качество регулирования и отсутствие контроля состояния системы.

Из известных наиболее близким по достигаемому результату к предлагаемому является способ формирования ПИ-закона регулирования и диагностики автоматической системы, при котором определяют абсолютное значение входного сигнала, пропорционального ошибке регулирования, сравнивают это значение с пороговым уровнем и, если абсолютное значение входного сигнала не превышает порогового уровня, то интегрируют входной сигнал, в случае превышения абсолютным значением входного сигнала порогового уровня интегрируют разность входного сигнала и сигнала, пропорционального результату интегрирования, входной сигнал суммируют с результатом интегрирования, а сумму масштабируют (Патент РФ N 2103715, МКИ G 05 В 11/36, опубл. 1998, БИ N 3).

В соответствии с известным способом формирования ПИ-закона регулирования в установившемся режиме при малой ошибке системы регулирующее воздействие формируют как промасштабированную сумму входного сигнала и интеграла от него, т. е. как при обычном ПИ- законе регулирования. При большом рассогласовании в системе, например при изменении сигнала, регулирующее воздействие формируют как сумму входного сигнала и выходного сигнала интегратора, охваченного отрицательной обратной связью, т.е. как при интегродифференцирующем корректирующем устройстве. В результате обеспечивается высокая точность автоматической системы в установившихся режимах и высокое качество регулирования при переходных процессах. Однако известное регулирующее устройство не обеспечивает контроля состояния системы и формирования сигнала о выходе системы из рабочего режима. Вследствие этого в системе возможны режимы работы с большим рассогласованием или длительные колебательные переходные процессы.

Таким образом, недостатки известного способа формирования ПИ-закона регулирования и диагностики автоматической системы - низкое качество регулирования и отсутствие контроля состояния системы.

Цель предлагаемого изобретения - повышение качества регулирования и обеспечение контроля состояния системы.

Поставленная цель достигается тем, что в известном способе формирования ПИ-закона регулирования и диагностики автоматической системы, при котором определяют абсолютное значение входного сигнала, пропорционального ошибке регулирования, сравнивают это значение с пороговым уровнем и, если абсолютное значение входного сигнала не превышает порогового уровня, то интегрируют входной сигнал, в случае превышения абсолютным значением входного сигнала порогового уровня интегрируют разность входного сигнала и сигнала, пропорционального результату интегрирования, входной сигнал суммируют с результатом интегрирования, а сумму масштабируют, дополнительно при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времена i, i = 2,.., n последующих n-1 превышений, удовлетворяющих условию i Tд , где Тд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n и в случае выполнения одного из этих условий формируют сигнал об аварийном состоянии системы.

По сравнению с наиболее близким аналогичным техническим решением предлагаемый способ имеет следующие отличительные признаки (новые операции): - при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времен i , i=2,.., n последующих n-1 превышений, удовлетворяющих условию i Tд , где Тд - заданное значение времени; - проверяют условия 1 Tд и 1 2 ... n - в случае выполнения одного из условий 1 Tд и 1 2 ... n формируют сигнал об аварийном состоянии системы.

Следовательно, заявляемое техническое решение соответствует требованию "новизна".

По каждому отличительному признаку проведен поиск известных технических решений в области автоматики и регулирования.

Операции, состоящие в том, что при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времена i , i = 2,...,n последующих n-1 превышений, удовлетворяющих условию i Tд , где Тд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n и, в случае выполнения одного из этих условий формируют сигнал об аварийном состоянии системы, в известных технических решениях не обнаружены.

Следовательно, указанные признаки обеспечивают заявляемому техническому решению соответствие требованию "существенные отличия".

Сущность предлагаемого способа формирования ПИ-закона регулирования и диагностики автоматической системы заключается в следующем. В установившемся режиме при малой ошибке системы регулирующее воздействие формируют как промасштабированную сумму входного сигнала и интеграла от него, т.е. как при обычном ПИ- законе регулирования. При большом рассогласовании в системе, например при изменении сигнала задания или возмущения регулирующее воздействие формируют как сумму входного сигнала и выходного сигнала интегратора, охваченного отрицательной обратной связью, т.е. как при интегродифференцирующем устройстве. При каждом превышении абсолютным значением входного сигнала порогового уровня измеряют время 1 этого значения и времена i , i= 2,..,n последующих превышений, удовлетворяющих условию i Tд , где Тд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n и в случае выполнения одного из этих условий формируют сигналы об аварийном состоянии системы.

Таким образом, при реализации предлагаемого способа обеспечиваются высокое качество регулирования и контроль состояния системы.

Следовательно, предлагаемое техническое изобретение соответствует требованию "положительный эффект".

Предлагаемый способ формирования ПИ-закона регулирования может быть реализован как программно, так и аппаратно. На фиг. 1 показаны временные диаграммы процессов в регулирующем устройстве, реализующем предлагаемый способ. На фиг. 1 обозначено: - входное воздействие регулирующего устройства (ошибка регулирования); 0 - пороговый уровень; y - выходной сигнал регулирующего устройства;
x - логический сигнал, характеризующий состояние устройства сравнения входного сигнала с пороговым уровнем 0 ;

где Ue - сигнал, соответствующий уровню логической единицы;
u - выходной сигнал регулирующего устройства, отражающий аварийное состояние системы; u = 0 при нормальном состоянии системы, u = Ue при аварийном состоянии.

На фиг. 1а показана диаграмма переходных процессов для u, y и x, и для случая уменьшения ошибки до значения меньшего по модулю 0 , за время, не превышающее Тд. В этом случае формирования сигнала об аварии не происходит.

На фиг. 1б показаны диаграммы переходных процессов для случая превышения абсолютным значением ошибки системы порогового уровня 0 в течение интервала времени, превышающего Тд. При этом в момент времени t0 на выходе регулирующего устройства формируется сигнал u = Ue, свидетельствующий об аварийном состоянии системы.

На фиг. 1в и фиг. 1г показаны временные диаграммы процессов в регулирующем устройстве при колебательном характере изменения входного сигнала (ошибки регулирования ). На фиг. 1в приведены диаграммы затухающего переходного процесса, при котором i < i-1 и не происходит формирования сигнала об аварийном состоянии системы. На фиг. 1г приведены диаграммы процессов при расходящемся колебательном сигнале ошибки . В этом случае по истечении времени Тд от момента первого превышения абсолютным значением входного сигнала порогового уровня происходит формирование сигнала u = Ue.

Во всех случаях при малой ошибке регулирования || 0 регулирующее устройство представляет собой пропорционально-интегральный регулятор с передаточной функцией

где k2 и T - коэффициент передачи и постоянная времени регулирующего устройства.

При большом входном сигнале передаточная функция регулирующего устройства имеет вид

где k1 - коэффициент передачи;
T1, T2 - постоянные времени.

Таким образом, при предлагаемом способе осуществляется быстрая отработка большой ошибки регулирования, а при достижении ошибкой уровня 0 происходит безударное включение астатической составляющей (пропорциональной интегралу от ошибки регулирования), благодаря чему обеспечивается высокая точность регулирования.

Значение 0 выбирается из условия обязательного переключения закона регулирования на астатический при малых ошибках, т.е. оно должно быть не менее максимально возможной ошибки системы, при статическом регулировании, т.е.


где - gмакс - максимальное входное управляющее воздействие;
fв.м - максимальное возмущающее воздействие;
kо - коэффициент передачи разомкнутой системы при статическом регулировании;
kв - коэффициент передачи системы по возмущению.

В случае, если входной сигнал (ошибка регулирования ) в течение времени t Тд превышает по модулю значение 0 или совершает незатухающие колебания, что свидетельствует о нарушениях в системе управления или объекте, на выходе регулирующего устройства формируется сигнал об аварийном состоянии системы. Этот сигнал может быть использован для сигнализации об аварии или отключении системы.

Блок-схема алгоритма, реализующего предлагаемый способ, приведена на фиг. 2. Функции основных блоков следующие:
1 - ввод времени Т и порогового уровня 0;
2 - ввод входного сигнала регулирующего устройства;
3 - сравнение абсолютного значения сигнала ошибки с пороговым уровнем 0;
4 - вычисление регулирующего воздействия в соответствии с интегродифференцирующим преобразованием сигнала ошибки

5 - вычисление регулирующего воздействия в соответствии с пропорционально-интегральным законом регулирования

6 - вывод выходного сигнала регулирующего устройства (регулирующего воздействия);
7 - определение текущего режима работы системы: P3 = True - активизирован режим защиты; P3 = false - режим нормальной работы регулирующего устройства;
8 - сравнение абсолютного значения ошибки с пороговым уровнем;
9 - инициализация режима защиты;
10 - счетчик времени нахождения системы в режиме защиты;
11 - проверка превышения временем нахождения системы в режиме защиты времени Тд;
12 - сравнение абсолютного значения ошибки с пороговым уровнем;
13 - проверка состояния флага окончания импульса;
14 - счетчик длительности текущего импульса, установка флага окончания импульса в положение "True";
15 - проверка условия i i-1
16 - сброс флага признака незатухающего колебательного процесса в случае, если условие i i-1 не выполнено;
17 - переприсвоение i-1 = i, обнуление i = 0 , сброс флага окончания импульса;
18 - проверка условия 1 = Tд;
19 - проверка флага признака незатухающего процесса;
20 - формирование аварийного сигнала;
21 - сброс признака режима защиты (переход системы в режим нормальной работы).

Рассмотренные способ формирования ПИ-закона регулирования и диагностики автоматической системы и конкретный алгоритм, показанный на фиг. 2, реализованы в микропроцессорной системе управления электроприводом постоянного тока, а именно в системе стабилизации тока возбуждения. Для реализации алгоритма был использован микропроцессор PIC16C711.

Таким образом, использование в известном способе формирования ПИ-закона регулирования и диагностики автоматической системы дополнительно операций, состоящих в том, что при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времена i, i = 2,...,n следующих n - 1 превышений, удовлетворяющих условию i Tд , где Тд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n и в случае выполнения одного из этих условий формируют сигнал об аварийном состоянии системы, позволяет повысить качество регулирования и обеспечить контроль состояния объекта.

Использование предлагаемого способа формирования ПИ-закона регулирования и диагностики автоматической системы в различных системах автоматики позволит повысить качество процессов управления и надежность работы оборудования.


Формула изобретения

Способ формирования ПИ-закона регулирования и диагностики автоматической системы, при котором определяют абсолютное значение входного сигнала, пропорционального ошибке регулирования, сравнивают это значение с пороговым и, если абсолютное значение входного сигнала не превышает порогового уровня, то интегрируют входной сигнал, в случае превышения абсолютным значением входного сигнала порогового уровня интегрируют разность входного сигнала и сигнала, пропорционального результату интегрирования, входной сигнал суммируют с результатом интегрирования, а сумму масштабируют, отличающийся тем, что дополнительно при каждом случае превышения абсолютным значением входного сигнала порогового уровня измеряют время 1 этого состояния и времена i, i = 2, ..., n следующих n - 1 превышений, удовлетворяющих условию i Tд, где Tд - заданное значение времени, проверяют условия 1 Tд и 1 2 ... n в случае выполнения одного из этих условий формируют сигнал об аварийном состоянии системы.

РИСУНКИ

Рисунок 1, Рисунок 2



 

Похожие патенты:

Изобретение относится к системам управления летательными аппаратами, в частности управляемыми снарядами

Изобретение относится к области контроля и диагностирования систем автоматического управления

Изобретение относится к системам управления технологическими процессами
Изобретение относится к области коммунального хозяйства и может быть использовано при диспетчерском контроле и управлении системами коммунального хозяйства

Изобретение относится к контролю и диагностированию систем автоматического управления (АСУ)

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов

Изобретение относится к области комплексного контроля основных датчиков пижотажно-навигационной информации, а именно построителя курсовертикали и датчиков угловых скоростей летательного аппарата (ЛА)

Изобретение относится к области техники измерений, конкретно к способам определения остаточной емкости свинцового аккумулятора (СА)

Изобретение относится к области систем управления и может быть использовано в системе управления транспортным средством

Изобретение относится к автоматическому регулированию, а именно к пропорционально-интегральным устройствам управления с ограничениями выходных сигналов и защитой их от насыщения, и может быть использовано при автоматизации различных технологических процессов

Изобретение относится к автоматическому регулированию, а именно к пропорционально-интегрально-дифференциальным (ПИД) устройствам управления с ограничениями выходных сигналов и защитой их от насыщения, и может быть использовано при автоматизации различных технологических процессов

Изобретение относится к области управления и может быть использовано в каналах управления летательных аппаратов, электроприводов роботов и при автоматизации технологических процессов

Изобретение относится к автоматическому регулированию

Изобретение относится к автоматическим регуляторам

Изобретение относится к автоматике и может быть использовано для управления объектами с запаздыванием, в частности для управления тепловыми объектами

Изобретение относится к системам автоматического управления и может быть использовано в химической, строительной и других отраслях промышленности

Изобретение относится к автоматическому регулированию, а именно к пропорционально-интегрально-дифференциальным (ПИД) устройствам управления с ограничениями выходных сигналов и защитой их от насыщения
Наверх