Способ преобразования тепловой и кинетической энергий рабочего тела в механическую энергию в газотурбинном двигателе

 

Способ преобразования тепловой и кинетической энергий рабочего тела в механическую энергию в газотурбинном двигателе включает в себя охлаждение отработавших в турбине горючих газов воздухом в теплообменнике. Отработавшие в турбине и охлажденные в теплообменнике горючие газы поступают в вихревой генератор с получением горячего и холодных потоков. Горячий поток направляется на смешивание с горючими газами, выходящими из камеры сгорания перед поступлением их на турбину. Такое осуществление способа приводит к снижению потребления воздуха и топлива и, следовательно, к росту КПД двигателя. 1 ил.

Изобретение относится к двигателям внутреннего сгорания, а конкретно к газотурбинным двигателям.

Наиболее близким по способу преобразования энергий является газотурбинный двигатель с процессом сгорания топлива при постоянном давлении, имеющий теплообменник и осуществляющий охлаждение горючих газов воздухом (см. Попов Н. С. Транспортные машины с газотурбинными двигателями. - М.: Агропромиздат, 1989, с. 8.

По условиям прочности температура рабочего тела перед турбиной не должна превышать 1000oC. Это достигается путем ввода в камеру сгорания воздуха в значительно большем количестве, чем требуется для процесса горения. По этой причине турбина компрессора потребляет мощность вдвое большую полезной мощности снимаемой с силовой турбины, при этом температура сбрасываемых в атмосферу газов достигает 300oC. Все эти затраты и потери не позволяют поднять термический КПД газотурбинного двигателя выше 30% и снизить потребление топлива.

Наиболее близким к предложенному изобретению является способ преобразования тепловой и кинетической энергии рабочего тела в механическую энергию в газотурбинном двигателе с рабочим циклом сгорания топлива при постоянном давлении, включающем в себя охлаждение отработавших в турбине горючих газов воздухом в теплообменнике (см. GB 2140873, М. кл. 6 F 02 C 3/34, 1984.).

Задачей, на решение которой направлено изобретение, является повышение термического КПД и экономичности газотурбинного двигателя.

Одним из реальных и эффективных средств более полного использования тепловой энергии является регенерация отработанного в силовой турбине рабочего тела. В аналогичных конструкциях газотурбинных двигателей регенерация тепловой энергии происходит в теплообменнике и не приносит значительного эффекта. В этой части способ преобразования тепловой энергии аналогичен с прототипом, но отличается тем, что для охлаждения горючих газов применяется рабочее тело.

Поставленная задача достигается за счет того, что в способе преобразования тепловой и механической энергии в газотурбинном двигателе с рабочим циклом сгорания топлива при постоянном давлении, включающем в себя охлаждение отработавших в турбине горючих газов воздухом в теплообменнике, отработавшие в турбине и охлажденные в теплообменнике горючие газы поступают в вихревой генератор с получением горячего и холодного потоков, первый из которых направляют на смешивание с горючими газами, выходящими из камеры сгорания перед поступлением их на турбину.

На чертеже изображен газотурбинный двигатель, в котором осуществляется описываемый способ.

Газотурбинный двигатель содержит последовательно расположенный компрессор 1, теплообменник 2, камеру сгорания 3, силовую турбину 4, вихревой генератор 5 и турбину 6 компрессора 16. Способ преобразования тепловой и кинетической энергии рабочего тела в механическую энергию осуществляется следующим образом. Воздух из компрессора 1 поступает в теплообменник 2, где, произведя теплообмен с рабочим телом, подается в камеру сгорания 3. В камеру сгорания 3 подается топливо, при сгорании которого при постоянном давлении образуется горючий газ. Горючий газ после прохождения силовой турбины 4 поступает в теплообменник 2 и далее в вихневой генератор 5. В вихревом генераторе, согласно эффекту Ранка, происходит разделение на "горячий" и "холодный" потоки отработанного в турбине и охлажденного в теплообменнике горючего газа. "Горючий" поток, обтекая камеру сгорания 3 и смешиваясь с горючим газом, направляется в силовую турбину 4. "Холодный" поток направляется на турбину 6 компрессора 16 и, отработав в ней сбрасывается в атмосферу.

Замена охлаждающей части воздуха регенерированным рабочим телом - горючими газами, снижает потребление воздуха и топлива до оптимальных величин. Количество потребляемого топлива соответствует развиваемой мощности и производимой работе. Количество подаваемого компрессором воздуха соответствует необходимой величине, обеспечивающей полное сгорание топлива. Снижение потерь тепловой энергии, затрат на привод компрессора 1 позволяет значительно поднять общий КПД газотурбинного двигателя.

Формула изобретения

Способ преобразования тепловой и кинематической энергий рабочего тела в механическую энергию в газотурбинном двигателе с рабочим циклом сгорания топлива при постоянном давлении, включающем в себя охлаждение отработавших в турбине горючих газов воздухом в теплообменнике, отличающийся тем, что отработавшие в турбине и охлажденные в теплообменнике горючие газы поступают в вихревой генератор с получением горячего и холодного потоков, первый из которых направляют на смешивание с горючими газами, выходящими из камеры сгорания перед поступлением их на турбину.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к энергетике и может найти применение в газотурбинных силовых установках, в частности в установках, предназначенных для приводов наземных транспортных средств

Изобретение относится к газотурбинным установкам (ГТУ), в частности, реализующим полузамкнутую схему рабочего процесса и утилизацию тепла выхлопных газов

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях, сжигающих органическое топливо и оборудованных газотурбоэлектрогенераторами

Изобретение относится к области теплоэнергетики

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях с комбинированным парогазовым циклом

Изобретение относится к установкам для выработки пара и может быть использовано в энергетике, например, для парогенерирующих установок с агрегатами наддува, обеспечивающих паром конденсационные паровые турбины, в том числе турбины с давлением пара на входе, превышающем критическое давление, и высокой температурой питательной воды, вплоть до критической

Способ регулирования осевого компрессора в системе газотурбинного двигателя заключается в подаче горячего газа, отбираемого из канала, расположенного за турбиной, в канал, расположенный между входным устройством и компрессором двигателя, в количестве, необходимом для поддержания заданной температуры газа на входе в компрессор. Температура газа на входе в компрессор поддерживается постоянной, равной температуре торможения воздуха на крейсерской скорости полета летательного аппарата. Расход воздуха через двигатель и перепад давления на сопле (при сохранении постоянной температуры газа на входе в компрессор) изменяются пропорционально изменению полного давления воздуха на входе в двигатель, что обеспечивает лучшие, чем в известных ГТД, тягово-экономические характеристики двигателя на сверхзвуковых скоростях полета. Применение способа решает проблему топливной эффективности ГТД на больших скоростях полета, создает условия для возрождения сверхзвуковой гражданской авиации. 2 з.п. ф-лы, 4 ил.

Изобретение относится к энергетике. Способ продувки магистрали рециркуляции отработавших газов газовой турбины, при котором используется выпускаемый поток из компрессора, причём первую часть выпускаемого воздуха направляют в магистраль рециркуляции отработавших газов для продувки, а вторую часть сжатого воздуха подают через вторую выпускную магистраль в парогенератор, работающий на вторичном топливе. Также представлена газовая турбина с продувочной магистралью согласно изобретению. Изобретение позволяет обеспечить надежную продувку магистралей рециркуляции отработавших газов без использования дополнительных нагнетательных вентиляторов. 2 н. и 13 з.п. ф-лы, 2 ил.

Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором, размещенный в корпусе вал компрессора и турбины, электролизер-кавитатор, местное сужение канала с центральным телом. Электролизер-кавитатор установлен в обособленном корпусе герметично, соединенном с камерой сгорания и с возможностью подачи газовой смеси под давлением за компрессором, через электролизер-кавитатор с центральным телом в камеру сгорания с воспламеняющим устройством. На выходе из камеры сгорания установлено устройство для разделения газового потока, содержащее сверхзвуковое сопло, внешнюю трубу, внутреннюю трубу, коаксиально расположенные друг относительно друга, канал рециркуляции дозвукового потока обратно в камеру сгорания. Изобретение направлено на увеличение КПД газотурбинного двигателя. 2 ил.

Изобретение относится к области рециркуляции дымового газа в газотурбинных установках, а именно к элементам для смешивания дымового газа с окружающим воздухом выше по потоку от компрессора. Всасывающая секция (2) выше по потоку от впуска компрессора (1) газотурбинной установки (1-7) с рециркуляцией дымового газа содержит по меньшей мере одну секцию (22) с протоком (31), образованным боковыми стенками (28-30), в котором поток свежего всасываемого воздуха протекает вдоль главного направления (33) потока воздуха. Секция содержит по меньшей мере две смесительные трубки (32), продолжающиеся в проток (31) от по меньшей мере одной боковой стенки (28-30). Каждая смесительная трубка (32) содержит впуск (34) на указанной по меньшей мере одной боковой стенке (28-30) для приема подвергнутого рециркуляции дымового газа (41), а также содержит по меньшей мере одно выпускное отверстие (37), расположенное на расстоянии от указанной боковой стенки (28-30), для продувания подвергнутых рециркуляции дымовых газов (41) из смесительной трубки (32) в поток воздуха. По меньшей мере две смесительных трубки (32) расположены в ряд, причем указанный ряд выровнен по существу вдоль направления (33) потока воздуха, а самая верхняя по потоку смесительная трубка (32) образует передний край этого ряда. Достигается равномерность перемешивания и повышается отказоустойчивость устройства. 3 н. и 21 з.п. ф-лы, 7 ил.
Наверх