Теплосчетчик-расходомер

 

Изобретение относится к устройствам измерения и учета тепловой энергии, передаваемой по трубам жидкими или газообразными теплоносителями. Прибор содержит измерительно-вычислительное устройство, датчики температуры и канал в корпусе. По бокам корпуса размещены датчики теплового потока с радиаторами. Внутри канала вдоль его оси расположены 2 стакана дном друг к другу. Входной и выходной патрубки входят внутрь стаканов. Между стаканами помещен датчик разности температур. Нагретый поток теплоносителя отдает через радиаторы часть тепловой энергии q, при этом меняется его температура на t. Измеряя q и t, вычислительное устройство определяет расход теплоносителя, а затем, с учетом его температуры, и количество переданной теплоты. Техническим результатом изобретения является возможность использования теплосчетчика в виде простых, надежных и недорогих приборов по учету тепловой энергии. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам измерения и учета тепловой энергии, передаваемой по трубам жидкими или газообразными носителями. Известны устройства, измеряющие расход теплоносителя и умножающие значения расхода на значения разности температур до и после объекта теплопотребления. Кроме того, должны быть учтены свойства теплоносителя.

Наиболее близким по технической сущности к предлагаемому является измеритель тепловой мощности, содержащий канал в виде корпуса, на поверхности которого размещены охлаждаемые датчики теплового потока, датчики температуры на входе и выходе канала (см. ДЕ, заявка 3303769, А1, МКИ G 01 K 17/10, 1983). Хотя такой измеритель прост по конструкции, но не нашел практического применения, поскольку разность температур между входом и выходом канала может быть весьма мала, особенно, при больших расходах теплоносителя. При этом соответственно мала и разность сигналов датчиков температуры. Применение электронного усиления сигнала в данном случае проблематично (сопоставимый уровень помех, нестабильность и прочее). Поэтому возникает необходимость получения большего сигнала. Это возможно за счет увеличения тепловых потерь на самом приборе, либо за счет применения большого числа датчиков температуры на входе и выходе канала. Во многих случаях эти способы нежелательны, так как это приводит к усложнению конструкции и увеличению габаритов прибора.

Получение достаточного уровня сигнала при сравнительно простом способе измерения разнести температур достигается в предлагаемом техническом решении. Для этого в теплосчетчике-расходомере, содержащем измерительно-вычислительное устройство, датчики температуры и расходомерную часть в виде канала, по бокам которого размещены датчики теплового потока с радиаторами, внутри канала расположены вдоль его оси два стакана, дном напротив друг друга, входной и выходной патрубки входят внутрь стаканов, а датчик разности температур помещен внутри канала, между дном одного и дном другого стаканов.

Предлагаемый теплосчетчик представлен на фиг.1. Расходомерная часть состоит из корпуса 1, радиаторов 2 с датчиками теплового потока 3. Внутри канала расположены стаканы 4 и 7, внутрь которых входят патрубки 5 и 6, а между дном одного и дном другого стаканов помещен датчик разности температур 8. Температура теплоносителя измеряется датчиком 9, а после объекта теплопотребления датчиком 10. Сигналы всех датчиков поступают на измерительно-вычислительное устройство 11.

Расходомерная часть работает следующим образом. Нагретый (или охлажденный) поток теплоносителя поступает во входной патрубок (например 5), омывает дно стакана, течет в обратную сторону по кольцевому каналу, образованному патрубком и стенками стакана. Затем поток поступает в следующий кольцевой канал, образованный корпусом 1 и стенками стаканов. При этом поток отдает (или принимает) в единицу времени через радиаторы 2 часть тепловой энергии q. Температура потока при этом изменяется на t. Затем поток опять проходит по кольцевым каналам и поступает в выходной патрубок, омывая дно второго стакана.

В подобных устройствах массовый расход теплоносителя G равен где ср - теплоемкость теплоносителя.

Следовательно, измеряя величины q и t при известной ср, можно определить значение расхода. По характеристикам датчиков имеем: для датчика 3 E1=k1q, для датчика 8 E2 = k2t, где k1 и k2 - коэффициенты преобразования датчиков. Отсюда следует q=E1/k1; t = E2/k2. Подставляя эти величины в формулу расхода, получаем Известно, что количество теплоты, передаваемой объекту теплопотребления в единицу времени, равно
Q = cpGT,
где T - разность температур теплоносителя до и после объекта теплопотребления. При применении дифференциального способа измерения температур получим сигнал E3 = k3T, то есть T = E3/k3. Следовательно, с учетам (1) получим, что



Таким образом в расчетную формулу (2) не входит теплоемкость теплоносителя, что является преимуществом устройств, в которых используется такой способ измерения.

Предлагаемый теплосчетчик может быть использован в виде простых, надежных и недорогих приборов по учету тепловой энергии. Кроме того, он может быть использован просто как расходомер, нагретых (или охлаждаемых) жидких или газообразных сред с учетом их теплоемкости.


Формула изобретения

1. Теплосчетчик-расходомер, содержащий измерительно-вычислительное устройство, датчики температуры и расходомерную часть в виде канала, на поверхности которого размещены датчики теплового потока с радиаторами, отличающийся тем, что внутри канала расположены вдоль его оси два стакана, дном напротив друг другу, а входной и выходной патрубки входят внутрь стаканов таким образом, что, поступая в патрубок, поток теплоносителя омывает каналы, образованные трубками, стенками стаканов и корпусом.

2. Теплосчетчик-расходомер по п. 1, отличающийся тем, что датчик разности температур помещен внутри канала, между дном одного и дном другого стаканов.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к устройствам для измерения тепла в системах водоснабжения, отопления и вентиляции

Изобретение относится к космической технике, конкретно к способам регулирования температуры теплоносителя в системах терморегулирования космических аппаратов (КА) с излучательным радиатором, и может использоваться при эксплуатации космических аппаратов различного назначения, преимущественно с длительным пребыванием на орбите

Изобретение относится к космической технике, в частности к системам терморегулирования (СТР) связных спутников

Изобретение относится к области приборостроения, связанной с измерениями расхода тепловыми расходомерами

Изобретение относится к области измерительной техники и может быть использовано для определения теплового потока, исходящего от теплонесущей текучей среды. Заявлен способ определения теплового потока (dQ/dt), исходящего от теплонесущей текучей среды (12), которая представляет собой смесь по меньшей мере двух различных текучих сред и которая протекает через пространство (11) потока от первого положения, где она имеет первую температуру (Т1), ко второму положению, где она имеет благодаря этому тепловому потоку (dQ/dt) вторую температуру (Т2), которая ниже, чем упомянутая первая температура (Т1). Плотность и удельную теплоемкость упомянутой теплонесущей текучей среды (12) определяют путем измерения скорости (vs) звука в упомянутой текучей среде, а упомянутые плотность и удельную теплоемкость упомянутой теплонесущей текучей среды (12) используют для определения теплового потока (dQ/dt). Также предложено устройство для реализации указанного способа, включающее средство для измерения дифференциальной температуры, средство для измерения абсолютной температуры, средство для измерения скорости звука в текучей среде, средство для измерения объемного расхода, а также блок оценки для определения теплового потока на основании полученных данных. Технический результат - повышение точности определения теплового потока, исходящего от теплонесущей текучей среды. 2 н. и 18 з.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к средствам измерений количества теплоты, выделяемой нагретыми жидкими, газообразными и многофазными теплоносителями в системах отопления, без нарушения их целостности. Предложенный теплосчетчик на основе накладных датчиков содержит датчик теплового потока и датчики температуры поверхности, а также измеритель их сигналов. При этом датчик теплового потока установлен на контрольном участке трубопровода, а датчики температуры поверхности установлены на границах контрольного участка трубопровода и на трубопроводах у входа и выхода системы отопления. Согласно изобретению на поверхности датчика теплового потока, который полностью перекрывает поверхность контрольного участка трубопровода, установлен съемный теплообменник, состоящий из двух идентичных частей, каждая из которых содержит металлические теплопроводы, на внешней поверхности которых размещены термоэлектрические Пельтье-батареи, подключенные к источнику питания и снабженные радиаторами, охлаждаемыми электрическим вентилятором, также подключенным к источнику питания. Технический результат – повышение точности и оперативности измерения фактических значений количества теплоты, выделяемой в системах отопления любым теплоносителем. 2 ил.
Наверх