Устройство электроискрового зажигания топливной смеси

 

Изобретение относится к области теплоэнергетики, двигателестроения, а также электроники в части схемотехники. Технический результат заключается в возможности создания устройства электроискрового зажигания топливной смеси с универсальной схемой, позволяющей неограниченно увеличивать мощность периодического искрового разряда, а также в повышении к.п.д. использования накапливаемой в паузах между разрядами энергии, в упрощении конструкции устройства и в уменьшении его массы и габаритов. Устройство электроискрового зажигания включает в себя последовательно подключенные к источнику тока ключ, первичную обмотку повышающего импульсного трансформатора и конденсатор. Параллельно первичной обмотке и конденсатору установлен ключ. Последовательно со вторичной обмоткой повышающего трансформатора, соединенной с электродами искрового промежутка, подключен конденсатор-накопитель, соединенный через ключ с источником тока или отдельным зарядным устройством. 2 ил.

Настоящее изобретение относится к области теплоэнергетики, двигателестроения, а также электроники в части схемотехники.

Известно устройство для электроискрового зажигания топливной смеси (смеси бензина, природного газа или других видов жидкого или газообразного топлива с воздухом) в двигателях внутреннего сгорания, включающее источник постоянного тока, катушку зажигания, являющуюся повышающим трансформатором, прерыватель тока (ключ) и распределитель (см., например, А.Г.Ходасевич, Т.И.Ходасевич “Справочник по устройству и ремонту электронных приборов автомобилей. Выпуск 1. Электронные системы зажигания”, М., Издательство “АНТЕЛ-КОМ”, 2001, стр. 14-16, рис. 2.1). Искра, поджигающая смесь, формируется в искровом зазоре (искровом промежутке) свечей зажигания, снабженных двумя электродами. Отличаясь достаточной надежностью, с чем и связано широкое распространение в автомобильной промышленности именно данного устройства, последнее имеет и ряд существенных недостатков. К ним относится, прежде всего, трансформация всей энергии для образования искры до напряжения, способного пробить искровой промежуток. Это имеет следствием снижение к.п.д., т.к. в ионизированном зазоре значительно возрастает электропроводимость. В связи с этим большая часть накопленной в катушке энергии теряется во внутреннем сопротивлении источника искры. По этой причине для получения искры большой энергии приходится нерационально увеличивать размер и массу катушки зажигания либо генерировать в зазор серию последовательных разрядов, которые после первой искры лишь незначительно ускоряют сжигание топлива и дополнительно перегревают катушку. Другим недостатком устройства данного типа является повышенная энергия излучаемых радиопомех, борьба с которыми дополнительно снижает энергию искры, а также заметное снижение мощности искры при нагретой катушке.

В современных устройствах зажигания контакты прерывателя заменены бесконтактными системами. При этом сохраняется основной принцип формирования искры за счет магнитной энергии, накапливаемой катушкой зажигания в паузах между импульсами разряда (см., например, вышеуказанный источник, стр. 33, рис. 5.1). Недостатки данных устройств совпадают с указанными выше.

Известны также устройства электроискрового зажигания, именуемые конденсаторными. Они отличаются повышенной энергией искры за счет конденсатора, накапливающего заряд в паузах между импульсами и разряжаемого транзисторным либо тиристорным ключом в первичную обмотку катушки зажигания. Схемотехника конденсаторных устройств весьма разнообразна (см., например, указанный выше источник, стр. 83, рис. 6.6 и 6.7; стр. 89, рис. 6.14) при сохранении главного принципа трансформации всей запасенной энергии до напряжения 20-30 кВ, способного пробить искровой промежуток свечи при высокой компрессии в цилиндрах двигателя. К недостаткам конденсаторных устройств также относится невозможность достигнуть высокой энергоотдачи сжигаемого топлива из-за недостаточной скорости его горения и требуемого сегодня снижения токсичности выхлопных газов. Кроме того, применение существующих в настоящее время конденсаторных устройств для зажигания энергетических горелок большой мощности (газовых, мазутных и др.) возможно лишь с использованием маломощных промежуточных поджигающих горелок, что усложняет их конструктивное исполнение. Для прямого зажигания мощных горелок требуется повышение энергии искры в сотни и тысячи раз, что в устройствах вышеописанного типа недостижимо. Это же относится и к запуску ракетных систем.

Наиболее близким к настоящему изобретению является конденсаторное устройство зажигания, включающее последовательно подключенные к источнику тока ключ, первичную обмотку повышающего импульсного трансформатора и конденсатор. Параллельно первичной обмотке и конденсатору также установлен ключ. Со вторичной обмоткой повышающего трансформатора соединены электроды искрового промежутка (см., например, указанный выше источник, стр. 30, рис. 4.4). Присущие данному устройству недостатки полностью совпадают с таковыми для вышеприведенных конденсаторных устройств электроискрового зажигания топливной смеси.

Задача настоящего изобретения состоит в создании устройства электроискрового зажигания топливной смеси с универсальной схемой, позволяющей неограниченно увеличивать мощность периодического искрового разряда.

Технический результат изобретения состоит в повышении к.п.д. использования накапливаемой в паузах между разрядами энергии при упрощении конструкции устройства, в уменьшении его массы и габаритов, в увеличении к.п.д. двигателей внутреннего сгорания и улучшении их экологических показателей, в снижении мощности излучения радиопомех, а также в упрощении конструкции горелочных устройств.

Указанный технический результат достигают за счет того, что в устройстве электроискрового зажигания топливной смеси, включающем последовательно подключенные к источнику тока ключ, первичную обмотку повышающего импульсного трансформатора и конденсатор, установленный параллельно первичной обмотке и конденсатору ключ и соединенные со вторичной обмоткой повышающего трансформатора электроды искрового промежутка, последовательно со вторичной обмоткой подключен конденсатор-накопитель, соединенный через ключ с источником тока или отдельным зарядным устройством.

Сущность предлагаемого изобретения состоит в следующем.

В прототипе вся накопленная в конденсаторе энергия одновременно используется для ионизации искрового промежутка и образования искры. При ионизации искрового промежутка в значительной мере снижается его сопротивление, и большая часть энергии теряется во внутреннем сопротивлении устройства. Кроме того, сила тока в искровом промежутке меньше, чем в первичной обмотке трансформатора, во столько раз, во сколько число витков вторичной обмотки трансформатора больше числа витков первичной обмотки. Сила тока в искровом промежутке в двигателях внутреннего сгорания таким образом меньше, чем в первичной обмотке, приблизительно в 100 раз.

Желаемое повышение энергии искры может быть достигнуто прямым разрядом (не через трансформатор) накопленной в конденсаторе энергии в ионизированный искровой промежуток. Использование прямого разряда в искровом промежутке известно за счет применения третьего ионизирующего электрода, например в устройствах, формирующих фотовспышку. Однако применение ионизирующего электрода далеко не всегда допустимо, особенно при использовании искры большой мощности. При работе двигателей внутреннего сгорания третий ионизирующий электрод не применяют, что, вероятно, связано с усложнением конструкции свечи и собственно устройства из-за необходимости применения дополнительных проводников и высокими температурами в цилиндрах. Но и в случае, если было бы возможным использование ионизирующего электрода, очевидно появление дополнительных проблем. При высокой частоте циклов прямого разряда конденсатора в искровой промежуток необходимо смягчать режим разряда. Смягчение может быть достигнуто за счет увеличения времени собственно разряда. Без указанного смягчения, т.е. при жестком разряде наступает быстрое разрушение конденсатора, а следовательно, становится ненадежной работа всего устройства. В настоящем изобретении для формирования искры использован именно прямой разряд с соответствующим решением проблемы его смягчения при исключении третьего ионизирующего электрода. Таким образом, трансформатор совмещает ионизирующие и силовые функции. Поскольку энергия излучаемых радиопомех зависит от величины напряжения в цепях разряда, использование прямого разряда конденсатора при напряжении на два порядка меньшем, чем при существующих устройствах зажигания, снижает радиопомехи до уровня, не требующего специальных мер борьбы с ними.

Устройство, реализующее настоящее изобретение, представлено на фиг.1.

К источнику тока 1 подключены последовательно соединенные ключ 2, первичная обмотка 3 повышающего импульсного трансформатора 4 и конденсатор 5. Параллельно первичной обмотке 3 трансформатора 4 и конденсатору 5 установлен ключ 6. Со вторичной обмоткой 7 трансформатора 4 соединены электроды 8 и 9 искрового промежутка 10.

Последовательно со вторичной обмоткой 7 трансформатора 4 соединен конденсатор-накопитель 11. Конденсатор-накопитель 11 соединен с источником тока 1 через ключ 12 (данный вариант предусматривает наличие одного источника тока).

На фиг.2 изображено устройство, имеющее отдельное зарядное устройство 13 (все остальные позиции фиг.2 совпадают по названиям и нумерации с позициями фиг.1), с которым через ключ соединен конденсатор-накопитель 11.

Устройство электроискрового зажигания топливной смеси по настоящему изобретению работает следующим образом. Работа устройства по сути носит циклический характер при трех фазах в каждом цикле. Рассмотрим работу устройства, изображенного на фиг.1. В первой фазе замыкают ключи 2 и 12. При этом конденсаторы 5 и 11 заряжаются до полного напряжения источника 1. Во второй фазе ключи 2 и 12 размыкают. В третьей фазе замыкают ключ 6. Конденсатор 5 разряжается через ключ 6 и первичную обмотку 3 повышающего трансформатора 4. В соответствии с коэффициентом трансформации во вторичной обмотке 7 трансформатора 4 индуктируется импульс высокого напряжения, способного пробить искровой промежуток 10 между электродами 8 и 9. Возникшая искра ионизирует искровой промежуток 10, создавая цепь для разряда конденсатора-накопителя 11 через вторичную обмотку трансформатора.

Происходит разряд конденсатора-накопителя 11 в искровой промежуток 10. Индуктивность вторичной обмотки 7 трансформатора 4 удлиняет время разряда конденсатора-накопителя 11, обеспечивая мягкий режим разряда.

Работа устройства, соответствующего фиг.2, проходит также. Отличие состоит лишь в том, что конденсатор 11 заряжается отдельным зарядным устройством 13.

В качестве ключей 2 и 12 при источнике постоянного тока могут быть использованы тиристоры, транзисторы, контакты реле. При источнике переменного тока в качестве ключей 2 и 12 используют диоды. В качестве ключа 6 может быть применен тиристор, транзистор, контакты реле либо контакты ручного переключателя.

Поскольку разряд конденсатора-накопителя создает в трансформаторе постоянную составляющую магнитного потока в сердечнике, последний должен иметь зазор, ускоряющий размагничивание сердечника за время паузы между циклами разряда. Объем сердечника трансформатора должен соответствовать мощности разряда, зависящей от емкости конденсатора 11, напряжения на нем и частоты периодов “заряд-разряд”. Предлагаемое устройство допускает получение разрядов мощностью в десятки кВт при средней мощности в единицы кВт и при частоте циклов разряда в десятки Гц, что бывает необходимо при зажигании мощных энергетических горелок и запуске ракетных двигателей в кратковременном режиме, а также при использовании в установках электрогидравлического удара в более длительном режиме. В двигателях внутреннего сгорания с длительным режимом максимальная мощность предлагаемого устройства составляет десятки Вт.

Формула изобретения

Устройство электроискрового зажигания топливной смеси, включающее последовательно подключенные к источнику тока ключ, первичную обмотку повышающего импульсного трансформатора и конденсатор, установленный параллельно первичной обмотке и конденсатору ключ и соединенные со вторичной обмоткой повышающего трансформатора электроды искрового промежутка, отличающееся тем, что последовательно со вторичной обмоткой подключен конденсатор-накопитель, соединенный через ключ с источником тока или отдельным зарядным устройством.

РИСУНКИ

NF4A Восстановление действия патента СССР или патента Российской Федерации на изобретение

Дата, с которой действие патента восстановлено: 20.04.2009

Извещение опубликовано: 20.04.2009        БИ: 11/2009



 

Похожие патенты:

Изобретение относится к искровым разрядникам, в частности к устройствам для воспламенения горючих смесей в двигателях внутреннего сгорания

Изобретение относится к источникам электроэнергии, устанавливаемым на двигателях внутреннего сгорания транспортных средств, в частности мототехники, для питания систем зажигания этих двигателей и бортовой сети мототехники (фары, фонари, светосигнальные приборы)

Изобретение относится к двигателестроению, в частности к автотранспорту, и может найти широкое применение в современном автотранспорте для снижения токсичности выхлопных газов

Изобретение относится к автомобилестроению, а именно к системам зажигания на транспортных средствах с двигателями внутреннего сгорания, и позволяет обеспечить надежный запуск двигателя, уменьшить зависимость надежности в работе двигателя от утечки напряжения, а также состояния зазора в свечах

Изобретение относится к автомобилестроению, в частности к системам зажигания на транспортных средствах с двигателями внутреннего сгорания и позволяет упростить конструкцию системы зажигания и обеспечить надежный запуск двигателя путем увеличения мощности и длительности разряда

Изобретение относится к системам зажигания, в частности к системе зажигания двигателей внутреннего сгорания, и позволяет улучшить режим работы двигателей путем создания искрового разряда с желаемыми характеристиками

Изобретение относится к электрооборудованию двигателей внутреннего сгорания и предназначено для поджига рабочей смеси в цилиндрах

Изобретение относится к области электротехники и может быть использовано для накопления электрической энергии большой энергоемкости в автономных системах электропитания

Изобретение относится к электрооборудованию транспортных средств

Изобретение относится к электрооборудованию двигателей внутреннего сгорания и может быть использовано в системах электростартерного пуска и искрового зажигания

Изобретение относится к системам электроискрового зажигания с емкостными накопителями энергии

Изобретение относится к технологии изготовления электрооборудования, эксплуатируемого на летательных аппаратах, в частности агрегатов зажигания авиационных газотурбинных двигателей и жидкостных ракетных двигателей, и может также быть использовано для изготовления изделий с применением пенопластов, к которым предъявляются повышенные требования к термостойкости и вибропрочности

Изобретение относится к области транспорта и может быть использовано для розжига горючих смесей с помощью электрической искры, в частности в емкостных системах зажигания для контроля системы зажигания, установленной на двигатель в составе летательного аппарата, для оценки технического состояния системы зажигания в перерывах между запусками двигателей летательных аппаратов. Техническим результатом является повышение достоверности контроля работоспособности емкостной системы зажигания двигателей летательных аппаратов. Устройство контроля емкостной системы зажигания двигателей летательных аппаратов содержит датчик разрядного тока, устройство сравнения, задатчик контрольного значения напряжения амплитуды разрядного тока, измеритель временного интервала времени, исполнительный элемент. Выход датчика разрядного тока соединен с первым входом устройства сравнения, выход задатчика контрольного значения напряжения амплитуды разрядного тока подключен к второму входу устройства сравнения. Выход измерителя временного интервала подключен к исполнительному элементу. В устройство контроля дополнительно введены измерительный преобразователь давления окружающей среды, содержащий последовательно соединенные датчик давления окружающей среды, усилитель, задатчик контрольного напряжения давления окружающей среды, второе устройство сравнения, одновибратор, логическое устройство «И». Выход измерительного преобразователя давления окружающей среды подключен к первому входу второго устройства сравнения. Выход задатчика контрольного напряжения давления окружающей среды подключен к второму входу второго устройства сравнения, выход устройства сравнения подключен к входу одновибратора, выход которого и выход второго устройства сравнения подключены к логическому устройству «И», выходом подключенному к входу измерителя временного интервала. 1ил.

Изобретение относится к области теплоэнергетики, двигателестроения, а также электроники в части схемотехники

Наверх