Пульсовой оксиметр

Изобретение относится к медицинской технике и может быть использовано для неинвазивного измерения насыщения артериальной крови кислородом. Устройство содержит блок красного излучателя, блок инфракрасного излучателя, блок фотоприемника, формирователь импульсов, три синхронных детектора, два вычитателя, блок вычисления и индикации. Устройство обеспечивает повышенную точность измерений за счет компенсации помеховой составляющей внешней световой засветки. 1 ил.

 

Изобретение относится к медицинской технике и может быть использовано для неинвазивного измерения насыщения артериальной крови кислородом.

Известен пульсовой оксиметр [1], содержащий блоки красного и инфракрасного излучателей, формирователь противофазных импульсов, блок фотоприемника, два синхронных детектора, блоки формирования, вычисления и индикации, блок калибровки. Недостатком устройства является ограниченная точность измерений ввиду неучета внешней световой засветки.

Известно устройство для контроля пульсового оксиметра [2], содержащее блоки красного и инфракрасного излучателей, формирователь противофазных импульсов, блок фотоприемника, два синхронных детектора, блоки формирования, вычисления и индикации, блок калибровки и переключатель. Недостатком устройства является ограниченная точность измерений ввиду неучета внешней световой засветки.

Наиболее близким по технической сущности является пульсовой оксиметр [3], содержащий блоки красного и инфракрасного излучателей, формирователь противофазных импульсов, блок фотоприемника, два синхронных детектора, блоки формирования, вычисления и индикации. Недостатком устройства является ограниченная точность измерений ввиду неучета внешней световой засветки.

Технический результат предлагаемого решения состоит в обеспечении повышенной точности измерений за счет компенсации помеховой составляющей внешней световой засветки.

Технический результат обеспечивается тем, что в пульсовом оксиметре, содержащем блок красного излучателя, блок инфракрасного излучателя, формирователь импульсов, блок фотоприемника, первый и второй синхронные детекторы, входы которых соединены с выходом блока фотоприемника, причем управляющий вход первого синхронного детектора соединен с входом блока красного излучателя и первым выходом формирователя импульсов, второй выход которого соединен с входом блока инфракрасного излучателя и управляющим входом второго синхронного детектора, и блок вычисления и индикации, формирователь импульсов выполнен с возможностью циклического последовательного формирования трех импульсов на соответствующих выходах, а также введены первый и второй вычитатели и третий синхронный детектор, вход которого соединен с выходом блока фотоприемника, управляющий вход соединен с третьим выходом формирователя импульсов, а выход соединен с соответствующими входами вычитателей, другие входы которых соединены с выходами соответствующих синхронных детекторов, а выходы соединены с соответствующими входами блока вычисления и индикации.

На чертеже представлена структурная схема пульсового оксиметра.

Устройство содержит блок 1 красного излучателя, блок 2 инфракрасного излучателя, формирователь 3 импульсов, блок 4 фотоприемника, первый, второй и третий синхронные детекторы 5, 6 и 7, первый и второй вычитатели 8 и 9, блок 10 вычисления и индикации.

Пульсовой оксиметр работает следующим образом.

Блок 1 красного излучателя, блок 2 инфракрасного излучателя и блок 4 фотоприемника устанавливают на пальце или мочке уха с помощью известных приспособлений. При циклическом поступлении импульса с первого выхода формирователя 3 импульсов на управляющие входы блока 1 красного излучателя и первого синхронного детектора 5 на вход блока 4 фотоприемника поступает прошедший через исследуемый объект сигнальный световой поток в красном диапазоне и помеховый световой поток внешней световой засветки, которые на выходе первого синхронного детектора 5 образуют аддитивную композицию, уровень которой сохраняется в течение длительности цикла.

При поступлении следующего импульса с второго выхода формирователя 3 импульсов на управляющие входы блока 2 инфракрасного излучателя и второго синхронного детектора 6 на вход блока 4 фотоприемника поступает прошедший через исследуемый объект сигнальный световой поток в инфракрасном диапазоне и помеховый световой поток внешней световой засветки, которые на выходе второго синхронного детектора 6 образуют аддитивную композицию, уровень которой сохраняется в течение длительности цикла.

При поступлении следующего импульса с третьего выхода формирователя 3 импульсов на управляющий вход третьего синхронного детектора 7 на вход блока 4 фотоприемника поступает только помеховый световой поток внешней световой засветки, который на выходе третьего синхронного детектора 7 образуют уровень, сохраняющийся в течение длительности цикла и вычитающийся из рассмотренных композиций в вычитателях 8 и 9, в результате чего на их выходах образуются и сохраняются в течение длительности цикла уровни только сигнальных световых потоков в красном и инфракрасном диапазонах, поступающие в блок 10 вычисления и индикации степени насыщения артериальной крови кислородом.

Пульсовой оксиметр может быть выполнен из типовых модулей и на доступной элементной базе. Конструктивное выполнение ряда блоков может совпадать с конструкциями того же функционального назначения прототипа. Например, блоки 1, 2 и 4 могут включать конструкции блоков 1-7 прототипа, блоки 5-7 идентичны блокам 8 и 11 прототипа, блок 10 может включать конструкции блоков 9, 10, 12, 13, 15 и 16 прототипа, причем вычисления проводятся по тем же общеизвестным формулам, что и в прототипе. Выполнение блоков в целом определяется их функциональным назначением в устройстве и известно либо очевидно из уровня техники в применяемых временном и частотном диапазонах.

Библиографический список

1. Патент №2194445 (RU). Пульсовой оксиметр / К.М.Матус и др. // БИ. 20.12.2002.

2. Патент №2201139 (RU). Устройство для контроля пульсового оксиметра / К.М.Матус и др. // БИ. 27.03.2003.

3. Патент №2152030 (RU). Пульсовой оксиметр (варианты) / К.М.Матус // БИ. 27.06.2000.

Пульсовой оксиметр, содержащий блок красного излучателя, блок инфракрасного излучателя, формирователь импульсов, блок фотоприемника, первый и второй синхронные детекторы, входы которых соединены с выходом блока фотоприемника, причем управляющий вход первого синхронного детектора соединен с входом блока красного излучателя и первым выходом формирователя импульсов, второй выход которого соединен с входом блока инфракрасного излучателя и управляющим входом второго синхронного детектора, блок вычисления и индикации, отличающийся тем, что формирователь импульсов выполнен с возможностью циклического последовательного формирования трех импульсов на соответствующих выходах, а также введением первого и второго вычитателей и третьего синхронного детектора, вход которого соединен с выходом блока фотоприемника, управляющий вход соединен с третьим выходом формирователя импульсов, а выход соединен с соответствующими входами вычитателей, другие входы которых соединены с выходами соответствующих синхронных детекторов, а выходы соединены с соответствующими входами блока вычисления и индикации.



 

Похожие патенты:

Изобретение относится к области медицины и может быть использовано при оценке результатов лечения пациентов с дефектами зубных рядов. .

Изобретение относится к области медицины, а именно к психофизиологии. .

Изобретение относится к медицине и предназначено для неинвазивного определения содержания глюкозы в крови человека. .

Изобретение относится к медицине и предназначено для диагностики состояния сердечно-сосудистой системы. .

Изобретение относится к медицинской технике и может быть использовано для чрескожного неинвазивного определения содержания билирубина в подкожных тканях и крови пациентов, преимущественно новорожденных.

Изобретение относится к медицине, а именно к хирургии, и может быть использовано для оценки эффективности проводимой консервативной терапии. .

Изобретение относится к медицине, а именно к педиатрии и гигиене детей и подростков, и может быть использовано при оценке индивидуального здоровья детей. .

Изобретение относится к медицине и используется при осуществлении мониторинга глюкозы больных. .
Изобретение относится к области медицины, а именно к психологии, и может быть использовано для диагностики очаговых поражений головного мозга и, в частности, отоневрологической сферы для оценки степени межполушарной асимметрии, а также для оценки степени умственного утомления.

Изобретение относится к медицинской технике, а именно к ортопедии и травматологии, и может быть использовано для лечения стойких сгибательно-отводящих контрактур тазобедренного сустава преимущественно травматической, а также воспалительной и дегенеративно-дистрофической этиологии

Изобретение относится к медицине, а именно к хирургии, и может быть использовано для диагностики тромбоза (флеботромбоза, тромбофлебита) глубоких вен нижних конечностей

Изобретение относится к медицине, а именно к устройствам и способам для применения при анализе широкого круга исследуемых веществ в разнообразных пробах и, в частности, для применения при анализе исследуемых веществ, содержащихся в цельной крови или ее производных

Изобретение относится к области медицины, в частности к внутренним болезням

Изобретение относится к медицине, в частности к гастроэнтерологии и неврологии, и может быть использовано для диагностики заболеваний пищевода различного генеза: как первично-мышечного поражения мышц, так и обусловленных нарушением центрального контроля работы мышц пищевода

Изобретение относится к медицине, в частности к оториноларингологии - отиатрии

Изобретение относится к медицине и предназначено для оценки состояния серозных оболочек
Наверх