Способ определения коэффициента теплопроводности твердых тел

Использование: изобретение относится к области испытания физических свойств материалов. Сущность изобретения - определение коэффициента теплопроводности предусматривает вычисление коэффициента теплопроводности по формуле

где с1v - теплоемкость одного атома при постоянном объеме; Δx - расстояние между ближайшими соседними атомами; mA - атомная масса химического элемента; kp - коэффициент ретикулярной плотности элементарной ячейки кристаллической структуры; а0 - период кристаллической решетки; Vзв - скорость передачи колебаний (скорость звука) в монокристалле. Технический результат - снижение трудоемкости и расширение функциональных возможностей. 1 табл.

 

Изобретение относится к способам определения коэффициента теплопроводности твердых тел.

Известен способ определения теплопроводности материалов, по которому, в частности, коэффициент теплопроводности рассчитывают за счет определения главных составляющих тензора теплопроводности анизотропных материалов (Авторское свидетельство СССР №1749802, М. Кл. G 01 N 25/18, 23.07.1992).

Известен способ определения теплофизических свойств твердых тел, по которому, в частности, образец нагревают, измеряют степень черноты, а теплопроводность λ определяют путем решения обратной задачи теплопроводности для ортотропного тела и уравнения теплового баланса (Патент РФ №1766172, М. Кл. G 01 N 25/18, 20.04.1995).

Известен способ комплексного определения теплофизических свойств материалов, по которому, в частности, измеряют толщину исследуемого образца, а теплофизические свойства определяют по формулам (Патент РФ №2018117, М. Кл. С 01 N 25/18, 15.08.1994).

Недостатком способов являются ограниченные функциональные возможности.

Наиболее близким по достигаемому результату является способ определения теплопроводности материалов, по которому, в частности, оказывают тепловое воздействие на образец, а теплопроводность определяют по формуле (Патент РФ №1784889, М. Кл. G 01 N 25/18, 30.12.1992).

Недостатками являются трудоемкость способа и ограниченные функциональные возможности.

Технический результат изобретения - снижение трудоемкости способа, возможность прогнозирования коэффициента теплопроводности твердого тела путем расчета по формуле, а также расширение функциональных возможностей за счет определения коэффициента теплопроводности для твердых тел предельно малых объемов на уровне нанометрических размеров.

Технический результат изобретения достигается за счет того, что в способе определения коэффициента теплопроводности, по которому коэффициент теплопроводности вычисляют по формуле, в отличие от прототипа предварительно определяют период кристаллической решетки для монокристалла рентгеноструктурным методом, а затем по формуле

где с1v - теплоемкость одного атома при постоянном объеме;

Δx - расстояние между ближайшими соседями атомами;

mA - атомная масса химического элемента;

kp - коэффициент ретикулярной плотности элементарной ячейки кристаллической структуры;

а0 -период кристаллической решетки;

VЗВ - скорость передачи колебаний (скорость звука) в монокристалле определяют коэффициент теплопроводности.

Кроме того, период кристаллической решетки можно определить по справочным данным (Кристаллография и дефекты кристаллической решетки. Учебник для вузов / Новиков И.И., Розин К.М. М.: Металлургия, 1990, 336 с.).

Пример конкретной реализации способа

Для рентгеноструктурного анализа изготавливаются образцы. Монолитные образцы в форме шлифов изготавливают из исследуемого материала обычными механическими способами и перед съемкой подвергают электролитической полировке для снятия наклепа. Плоские шлифы подготавливают для съемки с помощью электролитического травления для снятия деформированного слоя. При съемке на просвет образцы должны электролитически утоньшаться до тонкой фольги.

Для определения периодов кристаллической решетки необходимо измерить межплоскостные расстояния, проиндицировать дифракционные отражения и, зная связь между межплоскостным расстоянием, индексами отражающих плоскостей и периодами решетки, рассчитать последние (С.С.Горелик, Л.Н.Расторгуев, Ю.А.Скаков. Рентгенографический и электронно-оптический анализ. М.: Металлургия, 1970, 366 с.).

Методами прецизионного определения периода кристаллической решетки могут служить следующие:

- асимметричная съемка с расчетом по последним линиям;

- метод съемки на больших расстояниях в широком расходящемся пучке;

- метод съемки с независимым эталоном;

- безэталонный метод при обратной съемке и др.

Выбор того или иного метода определения периода решетки связан с расположением линий на рентгенограмме и симметрией решетки исследуемого материала (Н.Н. Качанов, Л.И. Миркин. Рентгеноструктурный анализ. М.: Машгиз, 1960, 216 с.).

Коэффициент ретикулярной плотности элементарной ячейки кристаллической структуры kp определяется в соответствии с правилами кристаллографии [Лахтин Ю.М., Леонтьев В.П. Материаловедение: Учебник для ВУЗов - 3-е изд., - М.: Машиностроение, 1990. - 528 с].

Например, коэффициент теплопроводности монокристалла меди - Cu с гранецентрированной кристаллической решеткой определяется как

где с1V - теплоемкость атома при постоянном объеме. В соответствии с законом Дюлонга и Пти

где NA - число Авогадро; k - постоянная Больцмана.

Скорость звука VЗВ, в частности, определяется как скорость продольных волн в твердом теле, поперечные размеры которого много больше длины распространяющейся волны

где Eюнг - модуль упругости;

μ - коэффициент Пуассона;

ρ - плотность материала.

Результаты некоторых расчетов сведены в таблицу.

Таблица
Символ элементаВеличина коэффициента теплопроводности, Вт/м*К
РасчетнаяЭкспериментальнаяПогрешность %
Cu364,8389,66,3
Al173,56209,317
Ag399,87418,74,5

Из таблицы видно, что расчетная величина коэффициента теплопроводности для меди Cu составляет 364,8 Вт/м*К, а экспериментальное значение - 389,6 Вт/м*К. Экспериментальные значения использованы из справочника (Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. - М.: Наука, 1982, с.73).

Таким образом, заявляемое изобретение позволяет снизить трудоемкость за счет расчета по формуле, в свою очередь, определение коэффициента теплопроводности для твердых тел предельно малых объемов на уровне нанометрических размеров расширяет функциональные возможности способа.

Способ определения коэффициента теплопроводности, по которому коэффициент теплопроводности вычисляют по формуле, отличающийся тем, что предварительно определяют период кристаллической решетки для монокристалла рентгеноструктурным методом, а затем по формуле

где с1v - теплоемкость одного атома при постоянном объеме;

Δx - расстояние между ближайшими соседними атомами;

mA - атомная масса химического элемента;

kp - коэффициент ретикулярной плотности элементарной ячейки кристаллической структуры;

а0 - период кристаллической решетки;

Vзв - скорость передачи колебаний (скорость звука) в монокристалле,

определяют коэффициент теплопроводности.



 

Похожие патенты:

Изобретение относится к технике для измерения состава двухкомпонентной среды и может быть применено в системах измерения и контроля в различных технологических процессах, например, при измерении состава и концентрации, уровня, массы и т.д.

Изобретение относится к измерительной технике. .

Изобретение относится к области измерительной техники. .

Изобретение относится к области технической физики и предназначено для измерения теплопроводности твердых тел, пористых материалов, насыщенных жидкими растворами расплавов жидких растворов органических веществ, жидких растворов солей, кислот и щелочей, несмешивающихся жидких растворов различных концентраций в интервале температур (- 100oC) (500oC) и различных давлений, включая окрестности фазовых переходов и критического состояния вещества.

Изобретение относится к теплофизическим измерениям и может быть использовано для определения теплопроводности различных материалов. .

Изобретение относится к области исследования теплофизических характеристик и механических свойств упругих однородных изотропных материалов путем приложения к ним статических нагрузок и предназначено для определения физико-механических и теплофизических свойств на одном образце.

Изобретение относится к теплофизическим измерениям и может найти применение в отраслях промышленности, связанных с разработкой и изготовлением тепловых машин различного назначения.

Изобретение относится к области термической обработки стали и сплавов с целью повышения их механических свойств и может быть применено для построения кадастра жидкостей по их охлаждающей способности
Изобретение относится к области автомобилестроения, в частности к испытаниям транспортного средства по определению тепловых условий внутри кабины

Изобретение относится к измерительной технике

Изобретение относится к области исследования свойств материалов с помощью калориметрических измерений и может быть использовано в бомбовых калориметрах переменной температуры для определения теплоты сгорания топлива

Изобретение относится к области термической обработки стали и сплавов для повышения их механических свойств

Изобретение относится к области измерений свойств и тестирования материалов, в частности, к способам определения магнитокалорического эффекта (МКЭ)

Изобретение относится к области теплофизических измерений и может быть использовано для определения тепловых свойств твердых тел и газов

Изобретение относится к области термической обработки стали и сплавов и может быть применено для построения кадастра жидкостей по их охлаждающей способности

Изобретение относится к области исследования и анализа теплофизических свойств материалов и может быть использовано при определении коэффициента теплопроводности сверхтонких жидких теплоизоляционных покрытий - u
Наверх