Способ определения удельного расхода анодной массы

Изобретение относится к электролитическому получению алюминия, в частности к способу определения удельного расхода анодной массы в самообжигающийся анод и определение величины удельного расхода анодной массы по уравнению. При этом дополнительно определяют показатель разрушаемости анодной массы в токе CO2, а величину удельного расхода анодной массы определяют по уравнению

Рамэ+333/bη+1,2(Тэ-960)/b+1,6РCO2/b, где Рам - удельный расход анодной массы, кг/т Al; Кэ - фактор электролизера, характеризующий дополнительный расход анодной массы, определяемый по среднестатическим среднегодовым данным, например для каждого конкретного завода; η - выход по току, доли единицы; Тэ - температура электролита, °C; РCO2 - показатель разрушаемости анодной массы в CO2, мг/см2·час; b - выход углерода из анодной массы в самообжигающийся анод, доли единицы. Техническим результатом является возможность прогнозировать эффективность от использования анодов того или иного качества на стадии приготовления анодной массы и себестоимость получаемого алюминия. 3 табл.

 

Предлагаемое изобретение относится к электролитическому получению алюминия и может быть использовано для контроля и прогноза технико-экономических показателей процесса электролиза алюминия.

Как известно, теоретический расход углерода при электролизе алюминия составляет 333 кг/т Al и определяется его окислением по основной реакции, протекающей в алюминиевом электролизере:

1/2Al2O3+3/4С=Al+3/4CO2

На практике расход анодной массы (Рам) в зависимости от ее качества и уровня техники и технологии электролиза может колебаться в пределах 520-580 кг/т Al.

Рядом авторов предпринимались попытки создания методики определения фактического удельного расхода анодной массы расчетным путем.

Так, по А.с. СССР №922183 (С 25 С 3/06 от 29.05.80) и А.с. СССР №1089175 (С 25 С 3/06 от 18.10.82) группа авторов НИиПИ "АрмНИПРОМ-цветмет" предлагает определять расход анодной массы по составу отходящих газов. На практике предложенные методики не применяются в связи с тем, что:

- во-первых, количество и состав отходящих газов алюминиевого электролизера значительно изменяются по времени как из-за нестабильности процесса электролиза (наличие технологических обработок ванны, наличие анодных эффектов), так и из-за нестабильности работы конструктивных элементов электролизера (горелок, укрытий, системы газоочистки и т.д.);

- во-вторых, предложенная методика требует значительных трудовых и материальных затрат на проведение замеров газовой фазы и обработку результатов замеров.

Для самообжигающихся анодов наиболее развернутое уравнение для расчета удельного расхода AM [М.А.Коробов и А.А.Дмитриев.Самообжигающиеся аноды алюминиевых электролизеров. М.: Металлургия, 1]:

, где:

t - температура электролита, °С;

η - выход по току, доли единицы;

в - выход углерода из анодной массы с учетом ее механических потерь, доли единицы;

б - анодная плотность тока, А/см2;

h - уровень жидкой массы, см;

К - коэффициент тепловой нагрузки Вт/см2.

Как наиболее близкая по технической сущности и достигаемому результату данная методика расчета выбрана за прототип.

Из приведенного уравнения можно сделать вывод, что авторы основное внимание уделили показателям процесса электролиза, несмотря на то что перерасход углерода самообжигающегося анода с верхним токоподводом в большей степени обусловлен его окислением анодными газами и так называемым пенообразованием.

Данный факт подтверждается практическими замерами, проведенными В.Ф.Дробнисом при составлении баланса углерода в электролитической ванне [1, стр.100].

Окисление и пенообразование зависят прежде всего от качества анодной массы, наиболее полно и объективно оцениваемого показателем разрушаемости в токе CO2. В уравнение М.А.Коробова данный показатель качества не включен. Это связано с тем, что в период составления методики расчета удельного расхода данный показатель не являлся обязательным для определения в условиях производства и методика его определения только отрабатывалась.

Во-вторых, уравнение насыщено эмпирическими коэффициентами, выбранными в соответствии с вышеуказанным балансом углерода Дробниса и отражающими уровень техники и технологии соответствующего времени без учета особенностей того или иного алюминиевого завода.

В-третьих, существенным недостатком методики по прототипу является то, что уравнение в большей степени привязано к традиционному аноду с повышенным содержанием связующего, в связи с чем в формуле возник показатель "h" - уровень жидкой массы. В настоящее время практически все заводы алюминиевой подотрасли переходят либо на "полусухой", либо "сухой" анод.

В-четвертых, такие показатели как анодная плотность тока (б), коэффициент тепловой нагрузки (К) являются параметрами нестабильными как во времени, так и в объеме анода.

Все вышеперечисленные недостатки были учтены в предлагаемом способе расчета удельного расхода анодной массы.

Задачей предлагаемого изобретения является снижение удельного расхода анодной массы и повышение технико-экономических показателей электролиза.

Техническим результатом предлагаемого способа является возможность не только оценивать расход анодной массы в зависимости от ее качества, но и прогнозировать эффективность (прибыль или убытки) от использования анодов того или иного качества на стадии приготовления анодной массы по показателю разрушаемости, а значит, и прогнозировать себестоимость алюминия, так как известно, что отрицательное воздействие анодов низкого качества на стоимость алюминия в три раза превышает удорожание от увеличения расхода анода.

Технический результат достигается тем, что в способе определения удельного расхода анодной массы самообжигающегося анода алюминиевого электролизера, включающем определение выхода по току, температуры электролита, выхода углерода из анодной массы в самообжигающийся анод и определение величины удельного расхода анодной массы по уравнению, дополнительно определяют показатель разрушаемости анодной массы в токе CO2, а величину удельного расхода анодной массы определяют по уравнению:

где:

Рам - расход анодной массы, кг/т Al;

Кэ - фактор электролизера, характеризующий дополнительный расход анодной массы, определяемый по среднестатистическим среднегодовым данным;

η - выход по току, доли единицы;

Тэ - температура электролита, °C;

РCO2 - показатель разрушаемости анодной массы в CO2, мг/см2·час;

b - выход углерода из анодной массы в самообжигающийся анод, доли единицы.

Сущность предлагаемой методики расчета расхода анодной массы состоит в том, что суммируются все основные статьи расхода анодной массы при электролизе, так:

- статья расхода, учитывающая теоретический расход анодной массы непосредственно на восстановление Al;

- статья расхода, учитывающая перерасход анодной в перерасход анодной массы за счет электрохимического окисления в зависимости от температуры электролита;

- статья расхода, учитывающая перерасход анодной массы за счет химического окисления.

В предложенную формулу расчета включены технологические и качественные параметры, регулярно контролируемые согласно действующим схем контроля и имеющие достоверные значения. Единственным слагаемым расхода анодной массы, не зависящим от текущих показателей процесса электролиза, является Кэ.

Кэ - фактор электролизера, который характеризует дополнительный расход анодной массы, зависящий от уровня техники и технологии. Для конкретного действующего завода Кэ можно считать величиной постоянной, поэтому данный показатель определяется как среднестатистическая величина по среднегодовым технико-экономическим данным завода. Естественно, с проведением реконструкции и совершенствованием технологии данная статья расхода анодной массы будет изменяться и потребуется его пересчет.

Аналогичную схему расчета расхода углерода в зависимости от уровня технологии и свойств анода, характеризуемых CR, предложили Fisher W.К. и др. (Light Metals, 1991, Р.681-686 или Цветные металлы 2001, №7, стр.73).

При работе с обожженными анодами было показано, что расход анода Сс (кг/т Al) и, надо полагать, количество пены при работе с ОА зависит от температуры электролита, выхода по току и свойств анода:

Сс=С+334/η+1,2(Т-960)-1,7CR+9,3AP+8TC-1,5AR, где

С - постоянная, зависящая от конструкции ванны;

CR - остаток образца (%), полученный при испытаниях образца в токе CO2%;

АР - газопроницаемость, кг/(с·м·Па);

AR - остаток, полученный при испытаниях в атмосфере воздуха, %;

ТС - теплопроводность анода, Вт/(м·К).

Эта зависимость предложена для электролизеров с обожженными анодами и включает в себя основные статьи расхода углерода при электролизе без пересчета на электродную массу. К тому же возникает законный вопрос - почему ряд эмпирических коэффициентов имеет знак минус.

Здесь же (Цв. металлы, 2001, №7) приведена формула расчета расхода анода для ванн с анодом Содерберга:

Сс=2,145-0,018CR

При этом сами авторы считают такой расчет расхода самообжигающегося анода заведомо приближенным, поскольку это уравнение не учитывает конструктивные особенности электролизера и технологические параметры электролиза, с которыми связан процесс окисления анода. Следует также добавить, что авторы не дают никакой информации о том, каким образом определяли реакционную способность самообжигающегося анода и каким образом, пользуясь их зависимостью, перейти на фактические расходы.

Автор методики расчета по заявке предлагает достоверную и логически правильную зависимость, позволяющую определить расход анодной массы и спрогнозировать влияние изменения ее качества на итогах работы алюминиевого завода в целом. При этом для оценки расхода анодной массы автор в отличие от прототипа предложил использовать современный, обязательный в схеме контроля, наиболее информативный показатель поведения анода при электролизе - разрушаемость в токе CO2. Также в предлагаемой методике расчета сокращается количество эмпирических коэффициентов по сравнению с прототипом. В формуле используются лишь два эмпирических коэффициента - 1,2 и 1,6:

- (1,2) является отражением общепринятой и практически достоверной зависимости изменения расхода углерода от изменения температуры электролита;

- (1,6) является коэффициентом приведения показателя разрушаемости (РCO2) к расходу углерода. Данный коэффициент определен расчетным путем на основе многолетних показателей работы БрАЗа. БрАЗ выбран в связи с тем, что для его работы с 1986 г. до 1995 г. характерны два периода, резко отличающиеся друг от друга качеством анодной массы по показателю РCO2:

- с 1986 г. по 1990 г., когда среднее значение РCO2 равнялось 36,2 мг/см2·ч, а средний расход анодной массы - 554,6 кг/т Al;

- с 1992 г. по 1995 г., когда среднее значение РCO2 равнялось 52,5 мг/см2·ч, а средний расход анодной массы - 588 кг/Al. (см. табл.1).

Табл.1

Показатели работы БрАЗа за 1986-1995 гг.
НаименованиеОтчетный период времени
19861987198819891990Ср.1992199319941995Ср.
РСО2 кг/см·час34,735,936,036,737,836,252,354,950,053,052,5
Расход А/м, кг/т Al568,3545,3557,8552,9548,6554,6574581589580581,0

Из данных таблицы 1 можно сделать вывод, что изменение РCO2 на 16,3 мг/см2·час привело к изменению расхода анодной массы на 26,4 кг/т Al:

Отсюда определяется коэффициент приведения K1

Данное числовое значение коэффициента приведения справедливо для самообжигающегося анода любого завода.

В формулу изобретения введен коэффициент Кэ, определяющий уровень техники и технологии. Данный коэффициент определяют по фактическим данным для каждого конкретного завода. Методика расчета Кэ будет приведена в разделе "промышленная реализация способа".

Перечисленные выше отличия предлагаемого способа определения расхода анодной массы от прототипа позволяют сделать вывод о соответствии его критерию изобретения "новизна".

Проведенный выше анализ показал, что принципиально отдельные признаки объекта защиты известны, однако совокупность известных и неизвестных признаков, указанных в формуле изобретения, позволяет выйти на новый уровень в оценке расхода анодной массы с использованием современных показателей ее качества. Таким образом, предлагаемое техническое решение соответствует критерию "изобретательский уровень".

Ниже приведен пример промышленной реализации предлагаемого способа.

В качестве примера берем Иркутский алюминиевый завод.

Прежде всего определяем Кэ, являющийся фактором электролизера и отражающий уровень техники и технологии ИркАЗа, например для 2000-2001 гг. В 2000 г. ИркАЗ работал на анодной массе марки АМ-0, а в 2001 г. - на массе марки АМ-1 по показателю разрушаемости в CO2.

Таблица 3

Исходные данные и пример расчета расхода анодной массы марок AM-О и AM-1.
Марка анодной массыКэK1ηТэbPCO2Рам
АМ-081,21,60,8826964,30,9335
81,2+333/0,93×0,8826+1,2(964,3-960)/0,93+1,6×35/0,93-552,6
АМ-181,21,60,8826964,30,9350
81,2+333/0,93×0,8826+1,2(964,3-960)/0,93+1,6×50/0,93=578,4

Как показывают расчеты в табл.3, увеличение расхода AM при замене массы АМ-0 на массу АМ-1 составляет 25,8 кг/т Al. Нетрудно подсчитать, что при себестоимости AM 7700 руб/т годовое увеличение затрат только за счет увеличения расхода AM для завода мощностью 270000 т Al/год составит 53,6 млн руб.

Учитывая, что отрицательное воздействие анодов низкого качества на стоимости алюминия в три раза превосходит удорожание от увеличения расхода анода, годовое увеличение затрат составит 160,8 млн руб.

Эти цифры убедительно доказывают не только необходимость постоянного контроля разрушаемости AM в CO2, но и необходимость предварительной оценки с помощью предлагаемой формулы экономической целесообразности вовлечения в производство того или иного электродного сырья, изменения состава и технологии приготовления анодной массы.

Способ определения удельного расхода анодной массы самообжигающегося анода алюминиевого электролизера, включающий определение выхода по току, температуры электролита, выхода углерода из анодной массы в самообжигающийся анод и определение величины удельного расхода анодной массы по уравнению, отличающийся тем, что дополнительно определяют показатель разрушаемости анодной массы в токе CO2, а величину удельного расхода анодной массы определяют по уравнению

где Рам - удельный расход анодной массы, кг/т Al;

Кэ - фактор электролизера, характеризующий дополнительный расход анодной массы, определяемый по среднестатистическим среднегодовым данным;

η - выход по току, доли единицы;

Тэ - температура электролита, °С;

РCО2 - показатель разрушаемости анодной массы в CO2, мг/см2·ч;

b - выход углерода из анодной массы в самообжигающийся анод, доли единицы.



 

Похожие патенты:

Изобретение относится к цветной металлургии, в частности к получению алюминия, а именно к операции замены отработанных обожженных анодов в электролизерах. .

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к конструктивным элементам алюминиевых электролизеров.

Изобретение относится к цветной металлургии, в частности к способам производства анодной массы для изготовления анодов алюминиевых электролизеров. .
Изобретение относится к области цветной металлургии, в частности к производству алюминия электролитическим способом на электролизерах с верхним подводом тока к самообжигающемуся аноду.

Изобретение относится к области металлургии, а именно к электролитическому получению металлов, например алюминия. .

Изобретение относится к электродному производству, в частности к производству анодной массы для анода алюминиевого электролизера. .

Изобретение относится к электролизеру для электролитического получения алюминия из глинозема, растворенного во фторидсодержащем расплавленном электролите, снабженному безуглеродными анодами на основе металла.

Изобретение относится к области электродного производства и может быть использовано при производстве анодов алюминиевых электролизеров для электролитического получения алюминия.

Изобретение относится к цветной металлургии и может быть использовано в электролизерах для получения алюминия электролитическим способом. .

Изобретение относится к получению алюминия коммерческой чистоты электролитическим путем

Изобретение относится к области цветной металлургии и может быть использовано при изготовлении инертных анодов для получения металлов электролизом расплавов, в частности для электролитического получения алюминия в криолит-глиноземных расплавах

Изобретение относится к получению алюминия электролизом, в частности, к комплекту инертных анодов электролизера для получения алюминия

Изобретение относится к цветной металлургии, в частности, к производству алюминия в электролизерах с обожженными анодами

Изобретение относится к электролитическому получению алюминия, в частности к конструкции анодного устройства, оснащенного устройством для перемещения обожженных анодов

Изобретение относится к области получения алюминия электролизом, в частности к устройствам для обслуживания алюминиевых электролизеров

Изобретение относится к электролитическому получению алюминия из криолитоглиноземного расплава, в частности к способу установки обожженных анодов в электролизере с верхним токоподводом

Изобретение относится к металлургии алюминия и может быть использовано на заводах по производству алюминия, оснащенных электролизерами с самообжигающимся анодом и верхним токоподводом

Изобретение относится к металлургии алюминия и может быть использовано на заводах по производству алюминия, оснащенных электролизерами с самообжигающимся анодом и верхним токоподводом
Наверх