Способ определения вязкости

Изобретение может быть использовано в химической и нефтяной промышленности строительных материалов. Техническим результатом является повышение точности определения вязкости и уменьшение трудоемкости эксперимента, а также возможность измерения одним и тем же шариком маловязких и непрозрачных жидкостей в широком диапазоне плотностей и вязкостей. Сущность: чувствительный элемент в виде шарика, соединенного перекинутой через блок гибкой нитью с находящимся в воздухе противовесом, помещают в измеряемую вязкую среду и регистрируют перемещение шарика. Шарик и противовес выполняют одинаковой массы, что обеспечивает их уравновешивание в воздухе. Шарик погружают в измеряемую вязкую среду на определенную глубину и разгоняют вверх под действием силы Архимеда. После этого измеряют высоту подпрыгивания шарика над поверхностью жидкости по проградуированной шкале, по величине которой судят о вязкости. 1 ил.

 

Изобретение относится к области исследований реологических свойств жидкости и может найти применение в промышленности строительных материалов, химической, нефтяной и др. отраслях промышленности для определения вязкости непрозрачных и прозрачных жидкостей.

Известен способ определения вязкости, заключающийся в том, что чувствительный элемент в виде тяжелого шарика, соединенного перекинутой через блок гибкой нитью с легким противовесом, помещают в измеряемую вязкую среду, противовес выполняют идентичным по форме и размерам шарика со строго определенным соотношением плотностей шарика, противовеса и измеряемой жидкости, после чего оба тела - противовес и шарик - одновременно погружают в исследуемую вязкую среду. Шарик погружают под действием силы тяжести и тормозят в вязкой среде до его полной остановки; в результате этого шарик погружается в жидкость на определенную глубину, по величине которой судят о вязкости [1]. В конце эксперимента шарик колеблется в жидкости.

Недостатками этого способа являются:

1) Низкая точность эксперимента из-за того, что не учитывается сила трения в блоке и возникают колебания шарика после выхода противовеса из жидкости.

2) Высокая погрешность определения вязкости из-за того, что в формулу для расчета вязкости подставляют среднее значение силы сопротивления вместо ее действительного текущего значения.

3) Большая трудоемкость эксперимента из-за необходимости подбора определенного соотношения плотностей шарика, противовеса и измеряемой жидкости, поэтому данный способ не является универсальным, т.к. требует для измерения вязкости жидкостей различных плотностей применение различных по плотности шариков и противовесов.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ определения вязкости, заключающийся в том, что чувствительный элемент в виде тяжелого шарика, соединенного перекинутой через блок гибкой нитью с находящимся в воздухе легким противовесом, помещают в измеряемую вязкую среду; в противовес в виде прозрачного градуированного цилиндра наливают исследуемую жидкость для уравновешивания шарика в этой жидкости, шарик поднимают на высоту h над уровнем исследуемой жидкости и затем погружают в жидкость на глубину l до полной остановки, по величине l рассчитывают вязкость [2]. В конце эксперимента шарик - в жидкости.

Недостатками указанного способа являются:

1) Низкая точность эксперимента из-за того, что не учитывается сила трения в блоке.

2) Высокая погрешность определения вязкости из-за того, что в формулу для расчета вязкости подставляют среднюю скорость движения вместо действительного текущего значения.

3) Большая трудоемкость эксперимента из-за необходимости использования эталонной жидкости и определения ее массы в градуированном цилиндре.

Задачами предлагаемого изобретения являются:

1. Повышение точности определения вязкости.

2. Уменьшение трудоемкости эксперимента.

Поставленные задачи достигаются за счет того, что чувствительный элемент в виде шарика, соединенного перекинутой через блок гибкой нитью с находящимся в воздухе противовесом, помещают в измеряемую вязкую среду и регистрируют перемещение шарика, шарик и противовес выполняют одинаковой массы, что обеспечивает их уравновешивание в воздухе; шарик погружают в жидкость на определенную глубину и разгоняют вверх в измеряемой вязкой среде, после чего шарик тормозят в воздухе и измеряют высоту подпрыгивания шарика над поверхностью жидкости, по величине которой судят о вязкости.

На чертеже приведен общий вид экспериментальной установки по предлагаемому способу, где 1 - шарик, 2 - блок, 3 - нить, 4 -противовес, 5 - измеряемая вязкая среда. Пунктиром показано положение шарика и противовеса в конце эксперимента.

Предлагаемый способ осуществляется следующим образом. Чувствительный элемент в виде шарика 1, соединенного перекинутой через блок 2 гибкой нитью 3 с находящимся в воздухе противовесом 4, помещают в измеряемую вязкую среду 5 и регистрируют перемещение шарика, шарик и противовес выполняют одинаковой массы, что обеспечивает их уравновешивание в воздухе; шарик погружают в жидкость на определенную глубину l и разгоняют вверх под действием силы Архимеда. Таким образом, у поверхности жидкости шарик будет обладать кинетической энергией, которая при дальнейшем движении шарика в воздухе расходуется на работу по преодолению силы трения в блоке до его полной остановки, в результате этого в воздухе шарик подпрыгивает на высоту Δh над поверхностью жидкости. После этого измеряют Δh, по величине которой судят о вязкости следующим образом: чем меньше вязкость жидкости, тем до большей скорости шарик разгонится и тем на большей высоте остановится в воздухе без каких-либо колебаний.

На противовесе закреплена стрелка для отсчета по шкале величины вязкости измеряемой жидкости. Данная шкала проградуирована для данной установки путем использования различных эталонных жидкостей с известной различной вязкостью.

Величина перемещения стрелки по шкале равна величине подпрыгивания Δh, которая будет различной в зависимости от вязкости измеряемой жидкости.

Достигаемый в результате применения данного способа положительный эффект заключается в следующем:

1) Обеспечивается высокая точность определения вязкости за счет того, что учитывается текущая (а не средняя) скорость движения.

2) Снижается трудоемкость эксперимента, т.к. отпадает необходимость заполнения противовеса эталонной жидкостью.

3) Одним и тем же шариком можно измерять маловязкие и непрозрачные жидкости в широком диапазоне их плотностей и вязкостей.

Источники информации

1. Авторское свидетельство СССР №661296, Кл. G 01 N 11/10, 1979 г.

2. Авторское свидетельство СССР №616560, Кл. G 01 N 11/10, 1978 г.

Способ определения вязкости, заключающийся в том, что чувствительный элемент в виде шарика, соединенного перекинутой через блок гибкой нитью с противовесом, помещают в измеряемую вязкую среду и регистрируют перемещение шарика, отличающийся тем, что шарик и противовес уравновешивают между собой в воздухе путем выполнения их одинаковой массы, шарик погружают в жидкость на определенную глубину и разгоняют вверх в измеряемой вязкой среде, после чего шарик тормозят в воздухе и измеряют высоту подпрыгивания шарика над поверхностью жидкости, по величине которой судят о вязкости, используя для этого проградуированную в единицах вязкости шкалу перемещений противовеса при подъеме шарика над поверхностью жидкости.



 

Похожие патенты:

Изобретение относится к устройствам для измерения динамической вязкости жидких сред и может быть применено в химической, лакокрасочной промышленности, промышленности строительных материалов для исследования маловязких жидкостей повышенной плотности типа смазочных масел, ртути, лаков и др.

Изобретение относится к устройствам для определения вязкости дисперсных материалов. .

Изобретение относится к устройствам для определения реологических характеристик вязких жидкостей (водные растворы, смазочные масла и др.) и представляет собой компактный карманный вискозиметр для экспресс-анализа исследуемой вязкой среды в нестационарных условиях.

Изобретение относится к устройствам измерения вязкости жидкости, в частности для экспресс-оценки качества моторного масла. .

Изобретение относится к области экспериментальных способов определения силы гидродинамического сопротивления обтекаемого тела, возникающего при его разгоне в вязкой жидкости, и может найти применение для исследования сопротивления маловязких жидкостей, типа вода, керосин, ацетон.

Изобретение относится к области техники для экструдирования биополимеров и предназначено для исследования поведения экструдата в компрессионных затворах и полостях утечек одношнековых прессов.

Изобретение относится к области исследования поведения экструдируемых биополимеров. .

Изобретение относится к измерительной технике и к способам оценки фактического состояния моторного масла, находящегося в картере двигателя, и может быть использовано для контроля концентрации механических примесей в моторном масле

Изобретение относится к области измерительной техники, в частности к бесконтактным аэрогидродинамическим способам и устройствам автоматического контроля физико-химических свойств жидкости (вязкости, плотности, поверхностного натяжения), и может найти применение как в лабораторной, так и производственной практике

Изобретение относится к технике измерения вязкости, а более конкретно - к устройству вибрационных датчиков погружного типа, предназначенных для использования в исследовательских лабораториях, в медицине, для контроля технологических жидкостей

Изобретение относится к гравитационной седиментации и может быть применено на шахтах и обогатительных фабриках для анализа диапазона крупности частиц в шламовых водах

Изобретение относится к способу и может быть использовано, например, при контроле и управлении технологическими процессами на предприятиях пищевой промышленности для оценки вязкости жидких оптически непрозрачных суспензий, а также при проведении научно-исследовательских работ

Изобретение относится к ультразвуковым средствам измерения вязкости жидких сред, а более конкретно к магнитострикционным вискозиметрам, и предназначено для контроля в реальном масштабе времени работоспособности рабочих жидкостей, в частности гидравлического, компрессорного, трансмиссионного, моторного и трансформаторного масла, а также для контроля технологических процессов переработки материалов

Изобретение относится к области экструдирования материалов растительного происхождения и может быть использовано для определения свойств экструдируемых древесных опилок

Изобретение относится к области измерительной техники и предназначено для измерения вязкости различных жидкостей

Изобретение относится к медицинской технике, а именно к анализаторам для автоматического определения показателей гемостаза (коагуляторам)

Изобретение относится к области измерительных средств, в частности для измерения вязкости жидких сред при различных температурах и прозрачности. Для достижения технического результата в корпусе (1) вискозиметра установлен теплоизолированный снаружи нагреватель (2) с цилиндрической полостью (5), в которую помещен установленный на платформе (7) цилиндрический стакан (6) для исследуемой жидкости. В стакан 6 погружен установленный на стойке 8 датчик температуры 9 для контроля температуры испытуемой жидкости и помещен чувствительный элемент 10, который установлен на коромысле 11, снабженном электромагнитным приводом 12. При этом коромысло 11 установлено на оси электромагнитного привода с возможностью поворота относительно оси, а чувствительный элемент 10 выполнен в виде шара из полимерного материала и закреплен на стержне 13, расположенном на рабочем плече коромысла с возможностью перемещения в стакане с испытуемой жидкостью. На другом плече коромысла закреплен противовес 14, обеспечивающий свободное перемещение шара в испытуемой жидкости при заданных температурах. Поворот коромысла 11 ограничен верхним 15 и нижним 16 упорами, закрепленными на панели 17 и предотвращающими выход шара из жидкой среды и касание шара дна стакана 6. В средней части коромысла установлен экран 18, взаимодействующий с установленными на панели 17 светодиодом 19 и фотоприемником 20 с возможностью перекрытия светового потока от светодиода на фотоприемник при перемещении коромысла с экраном. При этом светодиод 19 и фотоприемник 20 оптически связаны с экраном 18 для обеспечения задания постоянной глубины перемещения шара 10 в испытуемой жидкости и регистрации времени его перемещения из верхнего положения, характеризующего вязкость испытуемой жидкости. Для управления процессом измерения вязкости датчик температуры 9 электрически связан с блоком задания и измерения температуры испытания 22, снабженным переключателем температуры, светодиод 19 и фотоприемник 20 связаны с блоком контроля перемещения чувствительного элемента, измерения вязкости и ее регистрации 23, а электромагнитный привод 12 связан с блоком его управления 24. Указанные блоки 22, 23 и 24 связаны с блоком питания 25 и образуют систему автоматического управления процессом измерения вязкости. Техническим результатом является определение вязкости жидких сред при различных температурах, повышение точности измерений и автоматизации процесса измерения и упрощение конструкции. 3 ил.
Наверх