Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели

Изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте. Сущность: проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин. Выявляют по совокупности полученных данных геологические типы разреза с различными нефтегазопродуктивными свойствами для целевых пластов. Строят прогнозные сейсмические карты распространения выявленных типов разреза на площади исследования. Полученную карту трансформируют в цифровой формат, учитывающий параметры достоверности методики прогноза. На основе цифровой карты строят литологическую (литофациальную) модель пласта или месторождения. На базе полученной модели строят модели пористости и нефтегазонасыщенности горных пород. По полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых скважин. На основе всей имеющейся в модели информации оптимальным, с геолого-эколого-экономической точки зрения, образом размещают новые скважины. Технический результат: сокращение сроков работ, снижение негативного воздействия на окружающую среду.

 

Изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте.

Известен способ размещения скважин по спектрально-временным параметрам нефтегазопродуктивных типов геологического разреза, включающий бурение скважин с отбором керна, проведение электрического, радиоактивного, акустического и сейсмического каротажа, испытание скважин, исследование керна, проведение сейсморазведочных работ МОГТ и суждение по полученным данным о нефтегазопродуктивных, иных типах геологического разреза исследуемого объекта. Местоположение выявленных типов разреза определяют на картах по изолиниям равных значений спектрально-временных параметров. Скважины размещают по принципу максимальных, эффективных продуктивных объемов на изолиниях спектрально-временных параметров, соответвтвующих нефтегазопродуктивным типам геологического разреза, в доверительном интервале, равном 0,5 сечения карт (RU 2205435 С1, 27.05.2003).

Недостатками известного способа являются:

1) Использование в целях обоснования заложения скважин отдельных конкретных результатов сейсмического прогноза геологических типов разреза. Наличие одного конкретного прогнозного параметра (карты) не является достаточным для размещения новых скважин, поскольку не учитывает прочие показатели, не всегда коррелирующиеся с данным. Неиспользование части материалов ведет к ошибкам в определении точек размещения скважин.

2) Размещение скважин на основе двухмерной карты, а не трехмерной геологической модели. Использование результатов известных способов разведки при построении трехмерных геологических моделей может выполняться лишь на качественном уровне (используются общие закономерности) или они не используются вовсе. Полный учет результатов сейсмического прогноза не проводится ввиду отсутствия методологии и технологии их использования. Это означает, что при создании результирующей трехмерной геологической модели месторождения значительная часть накопленной геолого-геофизической информации не используется. Это приводит к значительным ошибкам в технико-экономических обоснованиях (ТЭО) доразведки и эксплуатации месторождений, ТЭО коэффициента извлечения нефти, а также невозможности детальной экономической оценки нескольких вариантов размещения скважин.

3) Результаты сейсмического прогноза представлены детерминистически и не преобразуются в стохастический (вероятностный) вид, что не позволяет создавать на их основе стохастические (вероятностные) модели, которые в настоящее время являются основным средством расчета рисков проведения тех или иных мероприятий, оценки запасов нефти и газа и практически любых технико-экономических проектов и обоснований. Помимо этого, при построении моделей не учитывается критерий достоверности методологии и технологии сейсмического прогноза, который важен при оценке рисков заложения новых скважин, оценке ресурсной базы месторождения по каждому геологическому типу разреза или типу коллектора в отдельности. Это приводит к получению только некоторой обобщенной величины оценки описанных выше важнейших технико-экономических показателей.

Техническим результатом является повышение надежности и точности обоснования заложения новых поисковых, разведочных и эксплуатационных скважин, составление и обоснование технико-экономических проектов доразведки и эксплуатации месторождений, технико-экономических обоснований коэффициента извлечения нефти, сокращение стоимости и сроков геологоразведочных работ на месторождениях нефти и газа за счет сокращения объемов буровых работ и повышения их результативности; повышение экологичности за счет сокращения негативного воздействия на окружающую среду, уменьшения объемов бурения и объемов вспомогательных инженерных мероприятий, таких как проведение коммуникаций, инфраструктуры.

Технический результат достигается тем, что способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели характеризуется тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным, с геолого-эколого-экономической точки зрения, образом размещают новые скважины.

Предложенное изобретение реализуется следующим образом.

Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа на основе трехмерной геологической модели, характеризующийся тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным, с геолого-эколого-экономической точки зрения, образом размещают новые скважины.

Стандартными являются операции:

- проведение сейсморазведочных работ, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин;

- выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования.

Операция трансформации полученных прогнозных карт распространения геологических типов разреза пластов в числовой формат, учитывающий параметры достоверности методики прогноза, выполняется в зависимости от метода проведенного сейсмического прогнозирования. В общем случае для каждого типа разреза выделяют четыре зоны, различающиеся оценочными параметрами достоверности выполненного сейсмического прогноза, а между их границами осуществляют линейную или гладкую интерполяцию. Эти четыре зоны таковы:

1. Прискважинная зона (участок в районе скважины с размерами, примерно соответствующими минимальным размерам выявленной или предполагаемой зоны распространения того типа геологического разреза, к которому относится данная скважина). Вероятность присутствия соответствующего типа в этой зоне принимается равной 1.

2. Зона уверенного выделения типа (участок внутри выявленной площади распространения того или иного типа разреза, находящийся на некотором удалении от границ смены типов геологического разреза; удаление выбирается на основе детальности проведенного анализа и ограничений метода прогноза). Вероятность присутствия соответствующего типа здесь уменьшается от 1 (прискважинная область) до числа, характеризующего доказанную или ожидаемую подтверждаемость использованного метода прогнозирования.

3. Зона интерполяции, которая находится между зоной уверенного выделения типа разреза и внешней границей прогнозного поля распространения данного типа разреза. Вероятность присутствия здесь соответствующего типа принимается уменьшающейся по направлению к границе прогнозного поля распространения от значения, характеризующего доказанную или ожидаемую подтверждаемость использованного метода прогнозирования, до этой же величины, деленной на количество типов геологического разреза, граничащих с данной областью в заданном направлении.

4. Собственно граница смены типов разреза. Вероятность присутствия здесь соответствующего типа принимается равной значению, характеризующему подтверждаемость использованного метода прогнозирования, деленному на количество типов геологического разреза, граничащих с данным на рассматриваемом участке.

В результате трансформации прогнозной сейсмической карты распространения типов разреза по вышеописанному принципу получается карта, которая характеризует не только прогнозные области распространения определенных типов разреза, как то имеет место на первичном варианте, но и точность прогноза (вероятность присутствия) данных типов для каждой точки территории. Вероятность присутствия остальных типов в этой точке рассчитывается отдельно в программной среде, в которой производится литофациальное моделирование. Сумма вероятностей присутствия всех типов при этом должна оставаться равной 1.

Операция построения на основе полученной карты литологической (литофациальной) модели пласта или месторождения может выполняться различным образом в зависимости от используемого программного обеспечения и поставленной задачи, например, с помощью свертки полученной карты вероятности с геолого-статистическими разрезами распределения литологических (литофациальных) типов по скважинам каждого конкретного типа разреза. Геолого-статистические разрезы (ГСР) определяют вероятность присутствия каждого конкретного моделируемого параметра (в данном случае - литологического типа породы) для каждого элементарного стратиграфического интервала моделируемого объекта и однозначно характеризуют выделенные ранее геологические типы разреза. Идея свертки состоит в том, что вероятностная карта типов разреза задает распространение типов разреза по площади, а ГСР - по разрезу (т.е. по вертикали), объединив эти закономерности, получаем объемную характеристику моделируемого объекта. Формулы свертки могут быть различными, например, при использовании в роли альтернативных соседних типов разреза формула выглядит следующим образом:

pпорода(i,j,k) - вероятность присутствия конкретного литологического типа в ячейке с номером i, j, k;

fтип(i,j) - вероятность присутствия геологического типа разреза в ячейке с номерами i, j (из прогнозной карты типов);

pпородаГСРтип(k) - вероятность (частота встречаемости) литологического типа в ячейке ГСР с номером k;

n - количество соседних геологических типов разреза.

Назначение формулы заключается в расчете вероятности присутствия каждого конкретного литологического типа в конкретной ячейке геологической объемной модели. Она рассчитывается как произведение вероятности наличия геологического типа разреза на площади (fтип(i,j)) на вероятность наличия данного литологического типа на вертикальном (стратиграфическом) уровне в соответствии с ГСР рассматриваемого геологического типа разреза. Остальная вероятность 1-fтип(i,j) одинаково распределяется между прилежащими «типами-соседями».

В итоге получаем кубы (т.е. трехмерные модели) распространения вероятностей наличия каждого конкретного литологического типа пород в каждой конкретной ячейке модели. Число кубов соответствует числу литологических (литофациальных) типов, используемых в модели. Полученные кубы вероятностей используются в виде трехмерных трендов при построении трехмерной литологической модели объекта. Собственно, методика моделирования выбирается в зависимости от исходных данных и поставленной задачи из стандартных методик, входящих в состав пакетов трехмерного моделирования.

Операция построения модели пористости осуществляется на основе полученной трехмерной литофациальной модели стандартным образом или с использованием методики использования карт распространения типов разреза, описанной выше (в разделе - построение литологической модели). Построение модели нефтегазонасыщенности также осуществляется одним из стандартных методов.

Операция оценки ресурсной базы месторождения может проводиться как стандартными методами, так и с разделением модели на зоны, соответствующие областям распространения конкретных геологических типов разреза или зоны распространения различных нефтегазоперспективных типов коллекторов. В этом случае на основе литофациальной модели выделяются отдельные участки геологической модели, соответствующие зонам распространения типов разреза или типов коллекторов, и в их пределах по отдельности стандартным образом на основе модели нефтегазонасыщенности проводится подсчет геологических запасов нефти и (или) газа.

Операция расчета оптимального положения новых (проектируемых) скважин проводится на основе нескольких (стохастических) реализаций геологической модели путем выбора минимального количества скважин, необходимого для решения поставленной геологической задачи среди всех возможных положений скважин в соответствии со всей имеющейся информацией, сведенной в трехмерную геологическую модель.

Способ размещения поисковых, разведочных и эксплуатационных скважин на месторождениях нефти и газа, характеризующийся тем, что проводят сейсморазведочные работы, бурение скважин с отбором керна из целевых пластов, геофизические исследования скважин, испытание скважин, выявление по совокупности полученных сейсмических и скважинных данных геологических типов разреза с различными нефтегазопродуктивными свойствами для целевых пластов, построение прогнозных сейсмических карт распространения выявленных типов разреза на площади исследования, при этом полученную на основе скважинных и сейсмических исследований карту распространения геологических типов разреза пластов трансформируют в числовой формат, учитывающий параметры достоверности методики прогноза, на основе полученной карты строят литологическую (литофациальную) модель пласта или месторождения, а на базе полученной литофациальной модели строят модели пористости и нефтегазонасыщенности горных пород, по полученной геологической модели проводят оценку ресурсной базы месторождения, определяют места возможного заложения новых (проектируемых) скважин, на основе всей имеющейся в модели информации оптимальным с геолого-эколого-экономической точки зрения образом размещают новые скважины.



 

Похожие патенты:

Изобретение относится к способам и средствам бесконтактного определения оси токопроводящего объекта, погруженного в среду, и может быть использовано в областях промышленности, эксплуатирующих трубопроводы и другие протяженные металлические коммуникации.

Изобретение относится к нефтяной геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на исследуемом объекте. .

Изобретение относится к области геохимического мониторинга окружающей среды и может быть использовано для выделения участков, территорий и населенных пунктов экологического неблагополучия по содержанию урана в накипи, а также для установления источников поступления элемента и зон его влияния.

Изобретение относится к нефтегазовой геологии и может быть использовано для оптимизации размещения разведочных и эксплуатационных скважин на нефтегазовых объектах.

Изобретение относится к контрольно-поисковым средствам и может быть использовано при техногенных авариях, природных катастрофах, террористических актах и при предотвращении опасных для населения акций.

Изобретение относится к области геологического обнаружения скрытых объектов, в частности к дистанционному зондированию при выявлении динамически напряженных зон земной коры с использованием комплексных методов разведки.

Изобретение относится к определению емкостных свойств флюидных коллекторов трещинного типа и может быть использовано в нефтяной, рудной геологии и гидрогеологии для подсчета запасов флюидных полезных ископаемых и металлоносных геотермальных залежей.

Изобретение относится к геофизике и может быть использовано при подземной добыче руд, в частности металлосодержащих залежей. .

Изобретение относится к геофизике и может быть использовано в нефтяной геологии для оптимизации размещения новых скважин на исследуемом объекте. .
Изобретение относится к области геологоразведочных работ и может быть использовано для поисков нефтяных залежей. .

Изобретение относится к области геофизических методов разведки с использованием комбинированных способов для определения вертикальных зон напряженного-деформированного состояния среды

Изобретение относится к нефтегазовой геологии и может быть использовано для оптимизации размещения скважин на исследуемом объекте

Изобретение относится к петрофизической оценке подземных пластов
Изобретение относится к области добычи полезных ископаемых и предназначено для поисков природных скоплений в недрах Земли газообразных водорода и гелия

Изобретение относится к области разведочной геофизики

Изобретение относится к геофизике и может быть использовано при поисках нефтяных и газовых месторождений
Изобретение относится к способам предотвращения неконтролируемого - лавинообразного извержения вулканов и организации контролируемого транспортирования магмы для ее использования при строительстве

Изобретение относится к способам изучения геологических сред и позволяет изучать пространственное распределение в земле источников геофизических и геохимических полей, которыми могут являться месторождения полезных ископаемых различных типов, зоны тектонических нарушений, археологические памятники и другие подземные объекты

Изобретение относится к способам обнаружения возможности наступления катастрофических явлений преимущественно на море

Изобретение относится к устройствам для измерения геофизических параметров в придонной зоне морей и океанов и может быть использовано для оперативной оценки сейсмического и гидродинамического состояния исследуемых районов, а также для прогноза сейсмических и экологических последствий природного и техногенного характера
Наверх