Способ получения хлороформа

Изобретение относится к способу получения хлороформа путем гидролиза гексахлорацетона водой при повышенной температуре в присутствии катализатора, в качестве которого используют неорганическое соединение кремния природного или синтетического происхождения или смеси таких соединений кремния с выделением хлороформа из реакционной массы известными способами. В качестве указанных соединений кремния преимущественно используют тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, таких как натрий, калий, магний, кальций, алюминий, медь, титан, свинец, марганец, железо, никель. Катализатор используют преимущественно в количестве 1-25% от массы реакционной смеси. Технический результат - существенное упрощение технологии получения хлороформа за счет исключения стадии регенерации катализатора, а также расширение сырьевой базы каталитического процесса. 2 з.п. ф-лы.

 

Изобретение относится к области химической технологии, а именно к способу получения хлороформа, который широко используется в качестве растворителя и сырья в производстве фторхлоруглеводородов и других химических продуктов.

Поскольку хлороформ представляет известную ценность, существует целый ряд способов его получения путем газофазного или жидкофазного хлорирования углеводородов (Ф.Ф.Муганлинский, Ю.А.Трегер, М.М.Люшин. Химия и технология галогенорганических соединений. - М.: Химия, 1991, с.68-71).

Хлорирование углеводородов имеет ряд существенных недостатков:

- возможность образования взрывоопасных смесей (Н.Н.Лебедев. Химия и технология основного органического и нефтехимического синтеза. - М.: Химия, 1975, с.120-121);

- образуется большое количество экологически опасного четыреххлористого углерода, производство и применение которого запрещено по Монреальскому протоколу.

Известен способ получения хлороформа из смеси, содержащей хлораль, путем ее обработки известковым молоком при температуре 50-80°С с отпаркой образующегося хлороформа (SU 125425, кл. С07С 19/04, 1960):

2CCl3СНО+2Са(ОН)2→2CHCl3+Са(НСОО)2.

Недостатком способа является образование формиата кальция, который требует сложной очистки и переработки в муравьиную кислоту или ее производные. Продукты не конкурентоспособны из-за более высокой цены, чем те же продукты, получаемые целевым синтезом.

Хлороформ можно получить из ацетона, этанола или метилацетата обработкой хлорной известью (Ф.Ф.Муганлинский, Ю.А.Трегер, М.М.Люшин. Химия и технология галогенорганических соединений. - М.: Химия, 1991, с.68) по следующей реакции:

2СН3СОСН3+6СаОСl2→2CHCl3+Са(СН3СОО)2+2Са(ОН)2+3CaCl2.

Метод долгое время использовался в промышленном масштабе, но из-за низких технико-экономических показателей в настоящее время потерял значимость по сравнению с более экономичными и эффективными современными методами получения хлороформа.

Известен способ получения хлороформа взаимодействием гексахлорацетона с раствором щелочи при значениях рН не более 10 и температуре не более 50°С (патент Японии №19927, 1968):

CCl3COCCl3+NaOH→CHCl3+CCl3COONa.

В данном способе наряду с целевым продуктом - хлороформом - получается трихлорацетат натрия, на образование которого расходуется щелочь. Ранее это соединение применяли как гербицид. В настоящее время используются гербициды нового поколения, более экологичные и эффективные.

Наиболее близким по технической сущности к предлагаемому способу является способ получения хлороформа (патент РФ №2206558, 2003), по которому гексахлорацетон гидролизуют водой в присутствии катализатора - этаноламинов - при температуре 95-150°С с одновременной отгонкой образующегося хлороформа.

CCl3COCCl32О2CHCl3+CO2.

Основным недостатком этого способа является то, что в процессе синтеза катализатор постепенно дезактивируется за счет протекания побочных реакций образования трихлорацетата амина, формиата амина, гидрохлорида амина. Регенерация катализатора из отработанного водного раствора довольно длительный и энергоемкий процесс. Сначала раствор отработанного катализатора кипятят при температуре выше 100°С в течение 3-5 часов для разложения трихлорацетата амина. Далее раствор охлаждают до 20-30°С и в него подают 40-45%-ную щелочь до рН 8-9 для разложения гидрохлорида амина и формиата амина. Выпавшие кристаллы хлористого натрия отфильтровывают.

Задачей предлагаемого способа является упрощение технологии получения хлороформа путем гидролиза гексахлорацетона водой.

Это достигается тем, что получение хлороформа каталитическим взаимодействием гексахлорацетона с водой при повышенной температуре осуществляют с использованием в качестве катализатора неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния с последующим выделением хлороформа из реакционной смеси известными способами.

По предлагаемому способу в качестве неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния преимущественно используют соединение, выбранное из группы включающей тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, преимущественно натрия, калия, магния, кальция, алюминия, меди, титана, свинца, марганца, железа, никеля, или их смеси в различных массовых соотношениях.

По предлагаемому способу катализатор используют предпочтительно в количестве 1-25% от массы реакционной смеси. В общем случае количество катализатора должно быть необходимым и достаточным для ускорения процесса гидролиза гексахлорацетона и может быть менее 1% или более 25% от массы смеси. Однако увеличение количества катализатора более 25% от массы смеси технически нецелесообразно, поскольку обусловливает снижение производительности технологического оборудования и количества получаемого продукта на единицу массы катализатора.

Предлагаемый процесс может быть реализован периодическим и непрерывным способом при атмосферном или избыточным давлении в пределах 0,05-6,0 ати.

Проведение процесса при атмосферном давлении позволяет использовать обычное технологическое оборудование, а проведение процесса при небольшом избыточном давлении позволяет снизить потери хлороформа и повысить его качество при выделении его из газовой смеси.

Процесс по предлагаемому способу осуществляют в любом обычном реакторе, который снабжен устройствами для перемешивания и для подачи гексахлорацетона и воды. Например, в реактор загружают необходимое количество воды и катализатора. Затем при перемешивании дозируют гексахлорацетон и воду в мольном соотношении 1:1,01-1,2 при температуре 90-160°С. Образующийся при гидролизе гексахлорацетона хлороформ выделяют из реакционной массы отгонкой или разделением водного и органического слоев. Существенным преимуществом предлагаемого способа является то, что не требуется дополнительного расхода реагентов, энергоресурсов, трудозатрат на регенерацию отработанного катализатора. Последний может быть использован без дополнительной обработки как добавка в строительные материалы (бетонные растворы, штукатурные массы и т.п.). К преимуществам относятся также доступность катализатора и легкость его выделения из реакционной массы, более высокая эффективность катализатора, его пожаро- и взрывобезопасность, а также экологическая безопасность по сравнению с этаноламинами.

Кроме того, ресурс работы предлагаемого катализатора существенно превышает ресурс работы этаноламинов.

Ниже приведены некоторые примеры, демонстрирующие сущность предлагаемого способа получения хлороформа, которые не ограничивают объем притязаний, определенный формулой и описанием данного способа.

Пример 1.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, оборудованным ловушкой Дина-Старка и соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 4,4 г гидросиликата натрия, нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 30 г/ч, одновременно дозируют воду, которая берется в мольном отношении 1,01-1,2 к молю гексахлорацетона. Температуру реакционной массы поддерживают в тех же пределах. Выделяющиеся при этом пары хлороформа, воды и углекислый газ охлаждают в холодильнике, который снабжен ловушкой-разделителем. Из ловушки вода возвращается в реактор, а хлороформ собирается в сборник.

За 16 часов работы получено 426 г хлороформа, выход его составил 98,4%.

Пример 2.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 5 г белой сажи марки БС-100, нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 25 г/ч. Далее так же, как описано в примере 1.

За 24 часа работы получено 537 г хлороформа, выход его составил 99,0%.

Пример 3.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 7 г силиката кальция. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 20 г/ч. Далее осуществляют синтез так же, как описано в примере 1.

За 45 часов работы получено 800 г хлороформа, выход его составил 98,6%.

Пример 4.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 10 г волластонита. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 20 г/ч. Далее так же, как описано в примере 1.

За 15 часов работы получено 268 г хлороформа, выход его составил 99,1%.

Пример 5.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 50 г воды, добавляют 2 г гидросиликата алюминия и 3 г аэросила. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 35 г/ч. Далее синтез проводят так же, как описано в примере 1.

За 72 часа работы получено 2250 г хлороформа, выход его составил 99,0%.

Пример 6.

В реактор, снабженный перемешивающим устройством, термометром, системой подачи гексахлорацетона, обратным холодильником, соединенным с системой поглощения абгазов, заливают 40 г воды, добавляют 8 г силиката кальция. Водную суспензию катализатора нагревают до температуры 95-105°С и дозируют в него гексахлорацетон со скоростью 35 г/ч. Далее осуществляют процесс так же, как описано в примере 1.

За 240 часов (10 суток) работы получено 7477 г хлороформа, при этом его выход составил 98,7% от теоретического.

Из приведенных примеров следует, что предлагаемый способ получения хлороформа позволяет существенно упростить технологию его получения методом каталитического гидролиза гексахлорацетона и исключить необходимость регенерации используемого катализатора.

Кроме того, использование в предлагаемом процессе указанных катализаторов значительно расширяет сырьевую базу технологии и определяет снижение себестоимости целевого продукта и снижение экологической нагрузки на окружающую среду за счет применения более доступных, экономичных, негорючих и нетоксичных неорганических соединений кремния вместо этаноламинов, относящихся ко второму и третьему классам опасности.

1. Способ получения хлороформа путем взаимодействия гексахлорацетона с водой при повышенной температуре в присутствии катализатора, отличающийся тем, что в качестве катализатора используют неорганическое соединение кремния природного или синтетического происхождения или смесь таких соединений кремния с последующим выделением хлороформа из реакционной смеси известными способами.

2. Способ по п.1, отличающийся тем, что в качестве неорганического соединения кремния природного или синтетического происхождения или смеси таких соединений кремния используют соединение, выбранное из группы, включающей тальк, волластонит, ксонотлит, диатомит, силикагель, аэросил, белую сажу, силикаты и/или гидросиликаты металлов, преимущественно натрия, калия, магния, кальция, алюминия, меди, титана, свинца, марганца, железа, никеля, или их смеси в различных массовых соотношениях.

3. Способ по п.1, отличающейся тем, что катализатор используют преимущественно в количестве 1-25% от массы реакционной смеси.



 

Похожие патенты:

Изобретение относится к способу и устройству для получения 1,2-дихлорэтана взаимодействием этена с хлористым водородом и газом, содержащим кислород. .

Изобретение относится к технологии органического синтеза и может быть использовано для получения 1,2-дихлорэтана. .

Изобретение относится к способу жидкофазного хлорирования этилена с отводом теплоты реакции за счет испарения реакционной среды. .

Изобретение относится к способу получения 1,2-дихлорэтана методом жидкофазного хлорирования этилена. .

Изобретение относится к способу получения 1,2-дихлорэтана методом жидкофазного хлорирования этилена. .

Изобретение относится к конструкции реактора барботажного типа для получения 1,2-дихлорэтана методом жидкофазного хлорирования этилена с отводом теплоты реакции при кипении рабочей среды.

Изобретение относится к получению 1,2-дихлорэтана методом жидкофазного хлорирования этилена с отводом теплоты реакции за счет кипения рабочей среды. .

Изобретение относится к получению 1,2-дихлорэтана. .

Изобретение относится к способу получения диенового соединения формулы CR1R2=CR3CFR4 CR5R6OCR7=CR8R 9 (1), включающий инициирование реакции перегруппировки Кляйзена соединения формулы CFR1R2CR 3=CR4CR5R6OCR7 =CR8R9 (2) в смеси, содержащей диеновое соединение формулы (1) и соединение формулы (2), с получением продукта, содержащего продукт реакции перегруппировки Кляйзена формулы CR5R6=CR4CR3 (CFR1R2)CR8R9CR 7=O (3) и диеновое соединение формулы (1), и отделение диенового соединения формулы (1) от продукта реакции перегруппировки Кляйзена, при этом R1-R9 в вышеприведенных формулах могут быть одинаковыми или различными, и представляют собой атом галогена, атом водорода, трифторметильную группу или трифторметоксигруппу.

Изобретение относится к области органической химии, а именно к новым смесям перфтор-, -хлорперфтор - и ,-дихлорперфторалканов формулы X(CF2)nY (где X=Y=F, Cl; X=F, Y=Cl; n=12, 14, 16), используемых в качестве порошков-ускорителей для пластиковых лыж, и способу получения этих смесей.

Изобретение относится к получению хлороформа, который используют в качестве растворителя и сырья в производстве фторхлоруглеводородов. .
Изобретение относится к производству товарного формиата натрия и получению при этом очищенного хлороформа. .

Изобретение относится к способу получения (гало) фторуглеводородов, используемых как охлаждающие агенты, вспенивающие агенты, растворители и пропелленты. .

Изобретение относится к химическому процессу, в частности к способу получения бис-фторметилового эфира взаимодействием формальдегида и фтористого водорода и к способу получения дифторметана, включающему стадию получения бис-фторметилового эфира из формальдегида и фтористого водорода.

Изобретение относится к органической и полимерной химии и представляют удобный и безопасный путь получения мономеров для целей органического синтеза и/или их /со/полимеризации, и может быть использовано в лабораторных условиях при потребностях до нескольких молей в день.
Изобретение относится к химической технологии и предназначен для получения хлороформа, используемого как сырье в производстве фторхлоруглеводородов (хладона 22, хладона 21), и для получения формиата натрия, используемого как консервант грубых кормов (силоса, влажного сена) в сельском хозяйстве.

Изобретение относится к органической химии, в частности к способу получения полифторалканов общей формулы R-R', где R и R' одинаковые или разные группы из числа CF3(CF2)n, где n=2-9, CClF2(CF2)n, где n=2-9, СНF2(CF2)n, где n=3-11, (CF3)2CF(CF2)3, CF3(CClF)2(CF2)4, которые могут быть использованы для синтеза высших моно- и дикарбоновых кислот, поверхностно-активных веществ на их основе, смазочных материалов, мономеров, растворителей, диэлектриков.
Изобретение относится к способу получения бензилового спирта, используемого в производствах основного органического синтеза, текстильной, лакокрасочной, медицинской промышленности
Наверх