Способ получения материала активной части для источника гамма-излучения

Изобретение относится к области радиохимического производства, в частности к технологии изготовления материала активной части источников гамма-излучения на основе изотопов цезия. Предлагается способ синтеза ортофосфата цезия-магния из водных или кислых растворов. Смесь растворов упаривают, сухой остаток подвергают поэтапной термообработке в диапазонах от 500 до 550°С и от 600 до 700°С. Изобретение позволяет синтезировать керамическую матрицу состава CsMgPO4, обладающую высокой химической и радиационной стойкостью по технологической схеме, исключающей потери радиоактивного вещества.

 

Изобретение относится к области радиохимического производства, и, в частности, к технологии изготовления материала активной части источников гамма-излучения на основе изотопов цезия.

Известна технология изготовления радиоизотопных источников с использованием хлорида цезия в качестве материала активной части (Химия долгоживущих осколочных элементов / под ред. А.В.Николаева - М.: Атомиздат, 1970). Данная технология имеет два основных недостатка: хлорид цезия является хорошо растворимым веществом и проявляет высокую коррозионную активность. Хорошая растворимость хлорида цезия существенно затрудняет возможность производить экологически безопасное хранение и захоронение отработавших источников.

Известна технология изготовления алюмофосфатного стекла, предлагаемого в качестве материала активной части изотопных источников (Алой А.С., Вишневский А.С., Кузнецов Б.С. и др. Включение концентратов цезия и мелкодисперсных пульп в стеклоподобные и керамические материалы // Атомная энергия - 1991. т.70). Данная технология имеет ряд существенных недостатков. Наиболее значимым является необходимость создания высоких (до 1100°С) температур в процессе варки стекла. Это приводит к значительному (до 5%) уносу цезия в газовую фазу. Второй недостаток - недостаточно высокий процент включения цезия (до 40%) в стеклоподобную матрицу. Другой проблемой является сложность дозировки требуемого количества стекла в ампулу источника.

Известный материал цезий-ниобий-вольфрамовая керамика, предлагаемый в качестве материала активной части источников гамма-излучения (Клапшин Ю.П., Крюкова А.И. Радиоактивная керамика. - Патент. - RU, 2000616 с. - Бюл. №33-36 07.09.93) не технологичен в производстве, т.к. в процессе твердофазного синтеза происходит значительный унос цезия в газовой фазе.

Наиболее близким к предлагаемому способу является синтез ортофосфата цезия-магния из твердых солей (Балуев А.В., Митяхина B.C., Рогозев Б.И., и др. Способ фиксации цезия. - Патент SU 1389563). В соответствии с этим методом на первом этапе синтеза необходимо осуществить растирание смеси солей реагентов с соотношением Cs:Mg:P=1:1:1, затем провести термообработку в температурном диапазоне 700-1000°С. Недостатком способа является наличие стадии диспергирования в технологии синтеза. Создание достаточно большой реакционной поверхности и высокой степени гомогенности смеси реагентов достигается за счет длительного диспергирования (растирания) солей, участвующих в твердофазной реакции. При работе с радиоактивными веществами стадия диспергирования крайне не желательна, т.к. приводит к потерям реагентов (унос в виде радиоактивной пыли). Кроме того, твердофазный синтез не всегда гарантирует высокий выход конечного продукта из-за возможных конкурирующих реакций, что обуславливает высокую вероятность появления примесных фаз и снижения качества (ухудшения характеристик) матричного материала. В результате присутствия цезия в легкорастворимых формах такой матричный материал не обеспечивает надежную фиксацию радионуклида.

В заявляемом способе предлагается проводить синтез ортофосфата цезия-магния из водных или кислых растворов путем соосаждения первичного продукта фосфорной кислотой с последующими стадиями термообработки. Целью изобретения является исключение стадии диспергирования при получении фосфатного материала, обеспечение высокого выхода конечного продукта и улучшение характеристик матричного материала.

Заявляемый способ позволяет получить продукт аналогичного в сравнении с прототипом химического состава, но при этом предлагает более предпочтительную схему синтеза.

Суммарное уравнение реакции синтеза в общем виде в случае использовании солей с однозарядной анионной частью может быть представлено следующим образом:

Способ получения ортофосфата цезия-магния включает следующие этапы:

- приготовление смеси водных растворов цезия и магния (нитратов, хлоридов или карбонатов) в стехиометрическом соотношении;

- постепенное добавление раствора фосфорной кислоты;

- упаривание полученного кислого раствора до полной отгонки свободной жидкости в диапазоне температур 90-120°С;

- прокаливание полученного сухого остатка при температурах 120-170°С в течение 2-5 часов с целью повышения сыпучести;

- изотермический обжиг в диапазоне температур 500-550°С в течение 3-6 часов для кальцинации солей реагентов;

- изотермический обжиг в диапазоне температур 600-700°С в течение 4-8 часов для кристаллизации целевой фазы;

- охлаждение до комнатной температуры;

- промывка цезий-магний фосфата водой либо разбавленным раствором азотной кислоты;

- сушка.

Полученный в виде порошка матричный материал дозируется в ампулу источника. При необходимости порошок матричного материала может прессоваться с получением таблеток.

Ортофосфатная керамика, получаемая заявляемым способом, обладает высокой гидролитической устойчивостью, не испытывает химических и фазовых изменений при радиационном и тепловом воздействии, что позволяет производить экологически безопасное хранение и захоронение отработавших источников без дополнительных мер по иммобилизации цезия.

Заявляемый способ в сравнении прототипом имеет следующие существенные преимущества:

- не требует температур выше 700°С, что исключает унос цезия в газовую фазу;

- обеспечивает приготовление материала, удобного при расфасовке, в ампулу источника;

- предлагает технологичную и экологически безопасную схему получения фосфатного материала.

Пример 1

В качестве реагентов предлагается использовать водные растворы нитрата цезия, нитрата магния и фосфорной кислоты концентрации 1 моль/л. Растворы солей необходимо смешать при комнатной температуре, затем прилить раствор фосфорной кислоты. При этом должно соблюдаться объемное соотношении реагентов 1:1:1. Полученную смесь солей и фосфорной кислоты просушивают при температуре 110°С до полной отгонки свободной жидкости. Время просушивания зависит от объема раствора. Далее производится прокаливание сухой смеси при температуре 150°С в течении 4 часов. Сухой остаток подвергается изотермическому обжигу при температуре 500°С в течение 4 часов, затем при температуре 700°С в течение 4 часов.

В результате синтеза получается высококристалличный продукт в виде порошка состава CsMgPO4.

Процесс синтеза и особенности фазообразования изучались с помощью методов дифференциального термического и рентгенофазового анализа. Конечный продукт, поликристаллический образец состава CsMgPO4, был испытан на химическую стойкость по методике, разработанной в соответствии с ГОСТ 29114 и ISO 6961. Скорость выщелачивания цезия лежит в пределах от 10-7 до 10-6 г/см2сут. Исследование устойчивости матричного материала к радиационному воздействию проводили, облучая образец конечного продукта гамма-излучением.

По результатам ИК-спектрального и рентгенофазового анализов облученный образец не претерпел химическую и фазовую деградацию.

Результаты проведенных исследований доказывают возможность достижения технического результата заявляемым способом.

Таким образом, предложенный способ получения материала активной части источника гамма-излучения позволяет синтезировать керамическую матрицу состава CsMgPO4, со степенью наполнения матрицы цезием до 53,5%, обладающую высокой химической и радиационной стойкостью по технологичной схеме, исключающей потери радиоактивного вещества.

Способ получения материала активной части для источника гамма-излучения, заключающийся в синтезе поликристаллического CsMgPO4 путем термообработки стехиометрической смеси исходных веществ с мольным соотношением Cs:Mg:P=1:1:1, отличающийся тем, что в качестве реагентов используют водные растворы солей цезия и магния и фосфорной кислоты, смесь растворов упаривают, сухой остаток подвергают поэтапной термообработке в диапазонах от 500 до 550°С и от 600 до 700°С.



 

Похожие патенты:

Изобретение относится к технологии получения медицинских средств, содержащих радиоактивные вещества, и может быть использовано для терапии онкологических заболеваний, а также для получения -источников, применяемых в приборостроении и биологических исследованиях.

Изобретение относится к ядерной медицине и может быть использовано при терапии онкологических заболеваний. .

Изобретение относится к области радиохимии и может быть использовано в технологии получения препарата радионуклида стронция-89. .

Изобретение относится к области техники ядерной физики и радиохимии, а именно к приготовлению циклотронных мишеней и тонкослойных источников радиоактивного излучения.
Изобретение относится к области медицины, в частности онкологии, лучевой терапии первичного и метастатического рака влагалища. .
Изобретение относится к области медицины, в частности онкологии, лучевой терапии рака тела матки. .
Изобретение относится к области медицины, в частности онкологии, лучевой терапии рака шейки матки. .
Изобретение относится к области химической технологии производства радиоактивных изотопов медицинского назначения. .

Изобретение относится к области технической физики, в частности к ускорителям легких ионов, и может быть использовано в качестве генератора нейтронов. .

Изобретение относится к области технической физики, в частности к получению нейтронов, и может быть использовано в ряде приложений. .

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к малогабаритным отпаянным ускорительным трубкам, и может быть использовано в ускорительной технике или в геофизическом приборостроении, например, в импульсных генераторах нейтронов народно-хозяйственного назначения, предназначенных для исследования скважин методами импульсного нейтронного каротажа

Изобретение относится к реакторной технологии получения радионуклидов, применяемых в ядерной медицине

Изобретение относится к области радиохимического производства, в частности к технологии изготовления материала активной части источников гамма-излучения на основе изотопов цезия
Изобретение относится к области радиохимии и может быть использовано для очистки препарата радионуклида никеля-63 от меди при выделении никеля-63 из облученных медных мишеней, а также в аналитической химии

Изобретение относится к изготовлению газонаполненных нейтронных трубок для генерации потоков нейтронов
Изобретение относится к области ядерной физики, а именно к получению нейтронов в результате взаимодействия ускоренных ионов дейтерия с ядрами трития, в частности к области изготовления дейтерий-тритиевых газонаполненных нейтронных трубок, которые предназначены для генерации потоков нейтронов
Изобретение относится к области ядерной медицины

Изобретение относится к области технической физики
Изобретение относится к химии и медицине
Наверх