Способ дезинфекции объектов окружающей среды

Изобретение относится к области медицины, в частности к медицинской микробиологии. Способ характеризуется последовательной обработкой дезинфицируемых объектов раствором соли двухвалентного железа (FeSO4, FeCl2 и др.) в концентрации 5 мМ-15 мМ и раствором пероксида водорода в концентрации 20 мМ-50 мМ. Способ обеспечивает дезинфекцию при использовании низких концентраций дезинфектанта и сокращает время дезинфекции. 4 табл.

 

Изобретение относится к медицине, в частности к медицинской микробиологии, и может быть использовано для дезинфекции объектов окружающей среды, контамированных микроорганизмами.

В настоящее время большое распространение получили способы дезинфекции с применением дезинфицирующих средств, состоящих из соединений различных классов. Известны способы дезинфекции с использованием различных дезинфицирующих препаратов: спиртов, альдегидов, кислот, щелочей, галогенсодержащих соединений (Венцел Р.П. Внутрибольничные инфекции. М.: Медицина, 1990, с.171-187).

Так, например, из класса четвертичных аммониевых соединений, используемых в качестве дезинфицирующих средств, наиболее известны: алкилдиметилбензиламмонийхлорид и цетилпиридинийхлорид, которые используются как в качестве самостоятельных дезинфицирующих средств (А.Шварц и др. "Поверхностно-активные вещества и моющие средства", изд. Иностранной литературы, М., 1960, с.152), так и в составе дезинфицирующих композиций (патенты РФ №2146151, А61L 2/16, опубл. 10.03.2000 и №2118174, А61L 2/16, опубл. 27.08.1998).

Известно, что длительное применение различных дезинфицирующих средств приводит к адаптации к ним микроорганизмов и, соответственно, к неэффективности дезинфекционных мероприятий (Соколова Н.Ф. Методологические основы определения устойчивости микроорганизмов к дезинфицирующим средствам. Материалы VIII съезда Всероссийского общества эпидемиологов, микробиологов и паразитологов, 2002, 4, с.55-56).

Известна устойчивость грамотрицательных бактерий к ряду поверхностно-активных веществ катионной и анионной природы (Kramer V.C., Nickerson K.W., Hamlet O.V., О, Hara С. Prevalence of extreme detergent resistance among the Enterobacteriaceae. // Can. J.Microbiol., 1984, vol.30, №5, p.711-713).

Существенным недостатком всех существующих дезинфицирующих веществ является их устойчивость к разложению и кумуляция в биологических объектах окружающей среды, что представляет собой опасность с точки зрения охраны окружающей среды.

Наиболее близкими к заявляемому способу по назначению и совокупности существенных признаков являются способы дезинфекции объектов, контамированных микроорганизмами, растворами пероксида водорода (Красильников А.П. Справочник по антисептике. - Мн.: Выш. шк. - 1995. - 367 с.).

Однако указанные способы имеют ряд существенных недостатков.

В известных способах для дезинфекции применяются высокие концентрации (3% и 6%) раствора пероксида водорода, обладающие выраженным коррозийным действием на дезинфицируемые объекты.

Для реализации указанных способов необходимо длительное время обработки дезинфицируемых объектов. Известна устойчивость микроорганизмов к дезинфицирующим веществам из классов окислителей, что объясняется продукцией микроорганизмами широкого спектра антиокислительных ферментов и веществ (Menendez M.C., Ainsa J.A., Martin С., Garcia M.J. katGI and katGII encode two different catalases-peroxidases in Mycobacterium fbrtuitum. // J.Bacteriol. 1997., Vol.179. (22). P.6880-6886, Смирнова Г.В., Музыка Н.Г., Глуховченко М.Н., Октябрьский О.Н. Перекись водорода модулирует внутриклеточные уровни тиолов и калия в клетках Escherichia coli // Микробиология. 1998. Т.67. №5. С.594-600).

Технический результат, на достижение которого направлено изобретение, заключается в создании экологически безопасного способа дезинфекции объектов окружающей среды, обладающего широким спектром действия по отношению к различным группам микроорганизмов при использовании низких концентраций дезинфектанта и сокращении времени дезинфекции

Для достижения указанного технического результата в предлагаемом способе дезинфекции объектов окружающей среды объекты предварительно обрабатывают раствором соли двухвалентного железа в концентрации, равной 5 мМ и более, а затем раствором пероксида водорода в концентрации, равной 20 мМ и более.

Отличительными признаками предложенного способа являются предварительная обработка дезинфицируемых объектов раствором соли двухвалентного железа в концентрации, равной 5 мМ и более, а затем раствором пероксида водорода в концентрации, равной 20 мМ и более.

Авторами экспериментально выявлен эффект выраженного потенцирования бактерицидного действия пероксида водорода добавлением раствора солей двухвалентного железа при использовании этих веществ в малых концентрациях.

При изучении влияния на выживание микроорганизмов различных концентраций пероксида водорода авторами было обнаружено усиление его действия после предварительной обработки микроорганизмов растворами солей двухвалентного железа. Выявленное авторами выраженное антибактериальное действие связано с генерацией гидроксильных радикалов, образующихся в результате взаимодействия ионов двухвалентного железа с пероксидом водорода (Ryan T.P., Aust S.D. The role of iron in oxygen-mediated toxicities. // Grit. Rev. Toxicol. - 1992. - Vol.22. P.119-141) и обладающим мощным бактерицидным эффектом (Alam, M.Z. and Ohgaki, S. Role of hydrogen peroxide and hydroxyl radical in producing the residual effect of ultraviolet radiation. // Water Environ Res. - 2002. - v.74. - P.248-255).

На первом этапе работы использовался эпидемиологически значимый при внутригоспитальных инфекциях микроорганизм Staphylococcus aureus. Оценивали бактерицидное действие следующим способом. Приготовляли взвесь микроорганизмов (способ приготовления взвесей: 24-часовую агаровую культуру микроорганизмов смывали стерильным 0,9% раствором хлорида натрия и готовили микробные взвеси, оптическая плотность которых соответствовала 0,27 при 591 нм на СФ-46). К 0,2 мл полученных микробных взвесей добавляли по 0,2 мл раствора FeSO4 в концентрациях от 0 до 15 мМ с интервалом в 1 мМ, инкубировали в течение 5 минут комнатной температуре. Затем к 0,4 мл полученных микробных смесей добавляли по 0,4 мл раствора пероксида водорода в концентрациях от 5 до 600 мМ с интервалом в 5 мМ, инкубировали в течение 15 минут при комнатной температуре. Из инкубированных смесей делали высевы на 1,5% мясопептонный агар (НПО «Питательные среды», Махачкала).

Результаты исследований представлены в табл.1, отражающей выживаемость культуры Staphylococcus aureus в зависимости от концентрации FeSO4 и пероксида водорода.

Как видно из данных, представленных в табл.1, бактерицидный эффект достигается при использовании концентраций FeSO4 и пероксида водорода соответственно 5-15 мМ и 20-50 мМ, в то время как при раздельном использовании компонентов тех же концентраций такого эффекта не наблюдается.

На следующем этапе исследования для оценки спектра действия заявляемого способа дезинфекции использовались эпидемиологически значимые при внутригоспитальных инфекциях микроорганизмы: Staphylococcus aureus и Escherichia coli, в качестве спорообразующих микроорганизмов был использован штамм Bacillus subtilis ATCC 6633. Оценивали бактерицидное действие следующим способом. Приготовляли взвесь микроорганизмов (способ приготовления взвесей: 24-часовую агаровую культуру микроорганизмов смывали стерильным 0,9% раствором хлорида натрия и готовили микробные взвеси, оптическая плотность которых соответствовала 0,27 при 591 нм на СФ-46). К 0,2 мл полученных микробных взвесей добавляли по 0,2 мл раствора соли железа (II) (FeSO4, FeCl2) в концентрациях от 0 до 15 мМ с интервалом в 1 мМ, инкубировали в течение 5-10 минут при комнатной температуре. Затем к 0,4 мл полученных микробных смесей добавляли по 0,4 мл раствора пероксида водорода в концентрациях от 5 до 60 мМ с интервалом в 5 мМ, инкубировали в течение 15-20 минут при комнатной температуре. Из инкубированных смесей делали высевы на 1,5% мясопептонный агар (НПО «Питательные среды», Махачкала).

Результаты исследований представлены в табл.2, 3 и 4, отражающих выживаемость культур Staphylococcus aureus, Escherichia coli и Bacillus subtilis в зависимости от концентрации солей двухвалентного железа и пероксида водорода. Как видно из данных, представленных в табл.2, 3 и 4, выживаемость микроорганизмов, в том числе и спорообразующих, при совместном использовании растворов солей железа (II) и пероксида водорода значительно ниже, чем при их раздельном применении в тех же концентрациях. Так, например, при обработке культуры Staphylococcus aureus раствором пероксида водорода в концентрациях от 0 до 60 мМ выживало около 85% микроорганизмов, тогда как при совместной обработке культуры 5 мМ раствором FeCl2 и 20 мМ раствором пероксида водорода наблюдалось полное уничтожение микроорганизмов (табл.2). При обработке культуры Escherichia coli раствором пероксида водорода в концентрациях от 0 до 60 мМ полная гибель микроорганизмов наблюдалась только при использовании пероксида водорода в концентрации выше 40 мМ, однако при совместной обработке культуры 5 мМ раствором FeCl2 и 20 мМ раствором пероксида водорода наступала полная гибель микроорганизмов (табл.3). Аналогичные результаты авторами получены и при обработке культуры Bacillus subtilis: установлено, что при обработке микроорганизмов раствором пероксида водорода в концентрациях от 0 до 60 мМ не наблюдалось полного уничтожения микроорганизмов, тогда как при совместной обработке культуры 5 мМ раствором FeCl2 и 20 мМ раствором пероксида водорода наступала их полная гибель (табл.4). Таким образом, на основании проведенных исследований авторами установлено, что при последовательной обработке микроорганизмов растворами солей железа в концентрации 5 мМ и выше и раствором пероксида водорода в концентрации 20 мМ и выше наблюдалось полное уничтожение микроорганизмов.

Способ осуществляется следующим образом.

1. Приготовляются раствор соли железа (II) (FeSO4, FeCl2 и др.) в концентрации 5 мМ и более и раствор пероксида водорода в концентрации 20 мМ и более.

2. Поверхность объекта обрабатывается приготовленным раствором соли железа (II) при помощи распылителя из расчета 500 мл/м3 или помещением объекта в емкость, содержащую приготовленный раствор соли железа (II). Для дезинфекции биологических жидкостей в последние добавляют соли железа (II) (FeSO4, FeCl2 и др.) до конечной концентрации 5 мМ и более.

3. Затем поверхность объекта обрабатывается приготовленным раствором пероксида водорода при помощи распылителя из расчета 500 мл/м3 или помещением объекта в емкость, содержащую приготовленный раствор пероксида водорода. Для дезинфекции биологических жидкостей в последние добавляют пероксид водорода до конечной концентрации 20 мМ и более

и, при необходимости, проводят стандартными методами оценку степени микробной обсемененности поверхности или объекта.

Примеры конкретного выполнения способа.

Пример 1. Поверхность окрашенной стены при помощи распылителя обрабатывали 15 мМ раствором сульфата железа (II) из расчета 500 мл/м3, затем 50 мМ раствором пероксида водорода из расчета 500 мл/м3. Через 20 минут методом отпечатков на агаре определяли количество выживших бактерий и микроскопических грибов и сравнивали с количеством микроорганизмов на необработанной поверхности стены.

Выявили, что количество микроорганизмов на необработанной и обработанной части оштукатуренной стены составило соответственно 760 и 3 КОЕ/см2.

Таким образом, выявлено, что предлагаемая в способе последовательная обработка поверхности оштукатуренной стены 15 мМ раствором сульфата железа (II) и затем 50 мМ раствором пероксида водорода приводит к снижению микробной обсемененности примерно в 250 раз.

Пример 2. В емкость, содержащую жидкие отходы пищевого производства, добавляли хлорид железа (II) до конечной концентрации 10 мМ. После перемешивания в течение 2-3 минут в емкость добавляли пероксид водорода до конечной концентрации 30 мМ.

Методом серийных разведений определяли количество выживших микроорганизмов, число которых составило до и после обработки соответственно 639 и 0 КОЕ/мл. Таким образом, использование заявляемого способа дезинфекции привело к полному уничтожению бактерий в обрабатываемом материале.

Пример 3. Медицинские инструменты - пинцет, корнцанг и скальпель - помещали в емкость, содержащую раствор хлорида железа (II) в концентрации 15 мМ, затем в емкость с раствором пероксида водорода в концентрации 30 мМ. Проведенное контрольное бактериологическое исследование смывов обработанных заявляемым способом медицинских инструментов не выявило наличия микроорганизмов.

Таким образом, использование предлагаемого способа позволяет дезинфицировать объекты окружающей среды: изделия и объекты медицинского, хозяйственного и бытового назначения, а также большие объемы жидкостей медицинского и коммунального происхождения, снижая количество жизнеспособных форм микроорганизмов.

Таблица 1
Выживаемость культуры Staphylococcus aureus в зависимости от концентраций FeSO4 и пероксида водорода
концентрация FeSO4, мМ
0 мМ1 мМ5 мМ10 мМ15 мМ
концентрация H2O2, мМКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроля
025251002525100252510025251002518100
5243496,4180071,3562,2441,7351,4
10241095,5163064,6351,4271,1120,5
15239095112044,4140,60000
20235293,283733,1000000
25229590,849619,6000000
30224688,91586,3000000
35218086,3682,7000000
40217286351,4000000
50214885,100000000
60212484,100000000
70202880,300000000
80193276,500000000
90183672,700000000
100154861,300000000
150126049,900000000
20097238,500000000
25068427,100000000
30051420,400000000
35043217,100000000
40040716,100000000
45038215,100000000
50035714,100000000
55033213,100000000
60030712,200000000

Таблица 2
Выживаемость культуры Staphylococcus aureus в зависимости от концентраций FeCl2 и пероксида водорода
концентрация FeCl2, мМ
0 мМ1 мМ5 мМ10 мМ15 мМ
концентрация H2O2, мМКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроля
025251002525100252510025251002518100
5220787,4180071,3562,2441,7351,4
10220187,2163064,6351,4271,1120,5
15220787,4112044,4140,60000
20220087,183733,1000000
2521968749619,6000000
30218886,71586,3000000
35218086,3682,7000000
40217286351,4000000
50214885,100000000
60212484,100000000

Таблица 3
Выживаемость культуры Escherichia coli в зависимости от концентраций FeSO4 и пероксида водорода
концентрация FeSO4, мМ
0 мМ1 мМ5 мМ10 мМ15 мМ
концентрация H2O2, мМКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроляКОЕ% от контроля
026231002623100235610020011001985100
5220384,0198675,756924,2381,9120,6
10178368,0163562,32189,3251,240,2
15136352,098237,41335,640,200
2094336,060223,0000000
2552319,9401,5000000
301154,400000000
35381,400000000
40431,600000000
500000000000
600000000000

Таблица 4
Выживаемость культуры Bacillus subtilis в зависимости от концентраций FeSO4 и пероксида водорода
концентрация FeSO4, мМ
0 мМ1 мМ5 мМ10 мМ15 мМ
концентрация H2O2, мМКОЕ% от контроля КОЕ% от контроля КОЕ% от контроля КОЕ% от контроля КОЕ% от контроля
017941001794100179410017021001680100
5171095,3163090,956931,7684221,3
10168093,6148682,821812,2372,2140,8
15145280,9110261,4873,7241,440,2
20116064,771840,0000000
2576042,433418,6000000
3047026,223413,0000000
3527015,11357,5000000
401508,4683,8000000
50905392,2000000
6080,400,0000000

Способ дезинфекции объектов окружающей среды путем обработки пероксидом водорода, отличающийся тем, что объекты предварительно обрабатывают раствором соли двухвалентного железа в концентрации равной 5-15 мМ, а затем с интервалом 5-10 мин раствором пероксида водорода в концентрации 20-50 мМ.



 

Похожие патенты:

Изобретение относится к способу получения соли полигуанидина, используемой в качестве дезинфицирующего средства в медицине и ветеринарии, при очистке сточных вод, а также в отраслях народного хозяйства, где требуются биоцидные препараты.

Изобретение относится к способам получения дезинфицирующе-моющего средства для изделий из черных тканей. .
Изобретение относится к области медицины, в частности к области санитарии и гигиены. .

Изобретение относится к медицине. .

Изобретение относится к области полимерной органической химии, в частности к синтезу органорастворимых биоцидных полимеров. .
Изобретение относится к средствам для дезинфекции. .

Изобретение относится к области медицинской техники и может быть применено при подготовке использованных одноразовых шприцев к утилизации. .
Изобретение относится к области дегазации отравляющих веществ (OB) и дезинфекции объектов санитарного надзора, зараженных возбудителями опасных инфекционных болезней вирусной и бактериальной природы, и может быть использовано для обеззараживания объектов, контаминированных совместно химическими OB и биологически опасными агентами
Изобретение относится к области санитарии и может быть использовано для проведения дезинфекционных мероприятий в сельском хозяйстве (в том числе в присутствии животных), различных отраслях промышленности, транспорта, здравоохранения и жилищно-коммунального хозяйства

Изобретение относится к отбеливанию природных волокнистых материалов и бумаги, а также волокон текстильных материалов

Изобретение относится к применению в качестве разобщающего агента эффективного количества растворимого в воде биоцида для подавления роста бактериальной биомассы в водной системе

Изобретение относится к химической технологии
Изобретение относится к области дегазации отравляющих веществ (ОВ) и дезинфекции бактериологических средств (БС), а также к проблеме ликвидации последствий от применения химического оружия
Изобретение относится к области медицины, ветеринарии и дезинфицирующим средствам, используемым в пищевой промышленности
Изобретение относится к области медицины, в частности к фармации и хирургии, и может быть применено для санации гнойных ран, полостей, свищей

Изобретение относится к области медицины
Наверх