Ультразвуковая антенная решетка

Использование: для ультразвукового неразрушающего контроля. Сущность заключается в том, что ультразвуковая антенная решетка содержит призму и пьезоэлементы, расположенные на ней под заданным углом своих акустических осей к рабочей поверхности решетки, при этом призма выполнена в виде периодической ступенчатой структуры, каждый пьезоэлемент расположен на отдельной ступеньке призмы и расстояния вдоль акустических осей пьезоэлементов от них до рабочей поверхности решетки равны. Технический результат: повышение разрешающей способности аппаратуры за счет улучшения отношения сигнал/шум. 2 ил.

 

Изобретение относится к области неразрушающего контроля, а именно к средствам дефектоскопии трубопроводов, сварных соединений, корпусов реакторов, железнодорожных рельсов, уложенных в пути, конструкций и сооружений из черных и цветных металлов и сплавов в широком диапазоне толщин при одностороннем доступе, и предназначено для применения в машиностроении, металлургии, в авиастроении, автомобилестроении, энергетике и других отраслях промышленности.

Известны ультразвуковые (УЗ) антенные решетки, используемые в УЗ-томографической аппаратуре, содержащие набор пьезоэлементов, расположенных на протекторе или преломляющей призме [Неразрушающий контроль: Справочник в 7 т. Под общ. ред. В.В.Клюева. Т.3: Ультразвуковой контроль / И.Н.Ермолов, Ю.В.Ланге. - М.: Машиностроение, 2006. - 864 с.: ил.]. Эти технические решения в составе ультразвуковых томографов позволяют визуализировать внутреннюю структуру объекта контроля, обнаруживать дефекты, оценивать их конфигурацию, размеры и координаты залегания. Однако эти решения имеют существенные недостатки.

Известна антенная решетка [Люткевич A.M. Выбор параметров системы ручного томографического контроля сварных швов. /Контроль. Диагностика, 2004, №5, с.23-30. (Рис.2 на стр.25)], которая содержит протектор и пьезоэлементы, расположенные на нем так, что их акустические оси нормальны к рабочей поверхности решетки. В ней пьезоэлементы находятся на одинаковых расстояниях от рабочей поверхности решетки, то есть находятся в одинаковых условиях по отношению к объекту контроля. Указанная антенная решетка работает преимущественно на продольных волнах, что ограничивает область ее применения. Излучение и прием поперечных волн этой решеткой возможны лишь за счет малости волновых размеров апертуры пьезоэлементов в плоскости, перпендикулярной длине пьезоэлементов. Малоапертурные пьезоэлементы в такой решетке обладают широко направленным акустическим полем в режимах излучения и приема. Максимумы диаграмм направленности этих элементов для продольных и поперечных волн направлены соответственно по нормали к поверхности объекта контроля и под углом, приблизительно равным 40 градусам, а ширина лепестков диаграмм направленности достигает 90-100 градусов, то есть данная антенная решетка обладает весьма рассеянным акустическим полем, что предъявляет высокие требования к аппаратуре, в которой она используется, и не обеспечивает регистрацию дефектов, например, сварных швов, для обнаружения которых требуется излучение и прием поперечных УЗ-волн в диапазоне углов 30-60 градусов относительно нормали к поверхности объекта контроля.

Наиболее близкой к предложенной решетке является ультразвуковая антенная решетка [Introduction to Phased Array Ultrasonic Technology Applications: R/D Tech Guideline. R/D Tech inc. 2004. 368 p. (Фиг.3-35 на стр.124)], содержащая призму и пьезоэлементы, расположенные на ней под заданным углом своих акустических осей к рабочей поверхности решетки. Угол наклона призмы выбран исходя из требуемого направления максимума акустического поля излучения - приема в объекте контроля. В этой решетке пьезоэлементы расположены на разных расстояниях от рабочей поверхности призмы, вследствие чего пути распространения ультразвука в призме у каждого пьезоэлемента различаются, причем для крайних пьезоэлементов это различие может достигать 3-5 раз. В результате у всех пьезоэлементов различны времена задержек УЗ-сигналов в призме, различны величины ослаблений сигналов в призме и, самое главное, разные степени расхождения ультразвука при распространении в призме. Последнее означает, что ультразвуковые пучки от каждого пьезоэлемента имеют разные площади поперечного сечения в зоне их преломления на границе призма - объект контроля. Эти недостатки антенной решетки достаточно трудно скомпенсировать программно-аппаратными средствами в аппаратуре.

Сущность заявляемого изобретения состоит в том, что в предложенной ультразвуковой антенной решетке, содержащей призму и пьезоэлементы, расположенные на ней под заданным углом своих акустических осей к рабочей поверхности решетки, призма выполнена в виде периодической ступенчатой структуры, каждый пьезоэлемент расположен на отдельной ступеньке призмы и расстояния вдоль акустических осей пьезоэлементов от них до рабочей поверхности решетки равны.

Техническим результатом применения предложенной ультразвуковой антенной решетки является то, что она позволяет расширить функциональные возможности и области применения томографической аппаратуры, работающей совместно с предложенной антенной решеткой, за счет улучшения отношения сигнал/шум и разрешающей способности аппаратуры.

На фиг.1 показан общий вид ультразвуковой антенной решетки для возбуждения и приема продольных и поперечных ультразвуковых волн в материале объектов контроля; на фиг.2 - вид ультразвуковой антенной решетки сверху.

Ультразвуковая антенная решетка содержит призму 1 в виде периодической ступенчатой структуры и n пьезоэлементов 2, каждый пьезоэлемент расположен на отдельной ступеньке призмы, а расстояния вдоль акустических осей пьезоэлементов r до рабочей поверхности 3 решетки равны. Призма 1 выполнена многоступенчатой по числу пьезоэлементов 2, угол наклона каждой ступеньки призмы α выбирается в зависимости от решаемой задачи и типа возбуждаемых ультразвуковых волн (продольных, сдвиговых или их сочетания). В зависимости от задачи контроля количество пьезоэлементов n выбирается в диапазоне от 10 до 250 шт.

Работа ультразвуковой антенной решетки

Поочередно на каждый пьезоэлемент подают возбуждающие электрические импульсы, под действием которых пьезоэлементы излучают в призму УЗ-импульсы, которые затем через слой контактной жидкости или смазки излучаются в объект контроля.

Вернувшиеся из объекта контроля УЗ-импульсы, отраженные от неоднородностей внутренней структуры объекта, проходят по ступенькам призмы и преобразуются пьезоэлементами в электрические сигналы.

Путем совместной пространственно-временной обработки этих сигналов в аппаратуре реконструируют изображения срезов внутреннего объема контролируемого объекта либо формируют другие типы изображений, удобных для анализа оператором, и определяют по ним параметры обнаруженных в объекте контроля неоднородностей (дефектов, границ материала и др.)

Поскольку все пьезоэлементы расположены по отношению к объекту контроля одинаково, параметры этого расположения (время задержки УЗ-сигналов, коэффициент передачи, форма диаграммы направленности пьезоэлемента и др.) однозначно, достаточно просто и одинаково для всех пьезоэлементов можно учесть в алгоритме пространственно-временной обработки принятых УЗ-сигналов. В результате качество реконструкции томограмм получается более высоким, чем в аппаратуре с использованием обычных призматических антенных решеток.

Техническим результатом применения предложенной ультразвуковой антенной решетки является то, что она позволяет расширить функциональные возможности и области применения томографической аппаратуры, работающей совместно с предложенной антенной решеткой, за счет улучшения отношения сигнал/шум и разрешающей способности аппаратуры.

Ультразвуковая антенная решетка, содержащая призму и пьезоэлементы, расположенные на ней под заданным углом своих акустических осей к рабочей поверхности решетки, отличающаяся тем, что призма выполнена в виде периодической ступенчатой структуры, каждый пьезоэлемент расположен на отдельной ступеньке призмы, и расстояния вдоль акустических осей пьезоэлементов от них до рабочей поверхности решетки равны.



 

Похожие патенты:

Изобретение относится к медицинской технике, в частности для применения в ингаляторах. .

Изобретение относится к устройствам подачи сигналов тревоги и может быть использовано в интегрированных системах безопасности. .

Изобретение относится к сильноточной импульсной технике и может быть использовано в качестве исполнительного механизма в системах однократного действия. .
Изобретение относится к пиро- и пьезоэлектрическим керамическим материалам на основе комплексных оксидов и может быть использовано для создания рабочих элементов датчиков пироэлектрических приемников теплового излучения в системах пожарной и охранной сигнализации и в пьезоэлектрических изделиях, используемых в качестве преобразователей в ультразвуковых дефектоскопах и толщиномерах.

Изобретение относится к области высоковольтной импульсной техники и может быть использовано в качестве источника импульсного электропитания различных электрофизических установок.

Изобретение относится к устройствам для преобразования сигналов давления в электрические сигналы, и наоборот. .

Изобретение относится к пьезоэлектрическим устройствам преобразования электрического напряжения в механическое перемещение и может быть использовано в сканирующей зондовой микроскопии.

Изобретение относится к устройствам механического перемещения объекта вдоль одной координаты. .

Изобретение относится к пьезоэлектрическому приводу, может найти применение при работе с двигателями высокоэкономичными, экологически чистыми, холодными. .

Изобретение относится к пьезоэлектрическим приборам для управления несущими плоскостями летательного аппарата

Изобретение относится к приборостроению и может найти применение в ультразвуковых приборах различного назначения в качестве устройства возбуждения и приема ультразвуковых сигналов, в частности в ультразвуковых расходомерах жидкостей и газов

Изобретение относится к области измерительной техники и может быть использовано в приборостроении и машиностроении для измерения угловой скорости

Изобретение относится к устройствам механического перемещения объектов вдоль одной координаты

Изобретение относится к области технологии обработки материалов ультразвуком в жидких средах

Изобретение относится к радиотехнике и может быть использовано в приборостроении и электронной промышленности для корпусирования и герметизации изделий функциональной электроники

Изобретение относится к области сегнетожестких пьезокерамических материалов, устойчивых к электрическим и механическим воздействиям, предназначенных для ультразвуковых устройств, в том числе многослойных и работающих при сильных электрических и механических воздействиях

Изобретение относится к области научного приборостроения и предназначено для использования в сканирующих зондовых микроскопах и нанотехнологических установках для микроперемещений объекта
Изобретение относится к получению материалов для производства сегнетоэлектрической керамики, используемой в электронной технике

Изобретение относится к области радиоэлектроники, в частности к материалам для изготовления компонентов радиоэлектронных приборов, таких как датчики магнитного поля, электрически перестраиваемые фильтры СВЧ, линии задержки СВЧ и др
Наверх