Стенд для испытания упругих элементов на усталость

Стенд для испытания упругих элементов на усталостную прочность относится к машиностроению и может быть использован для испытания различных упругих элементов: пружин, амортизационных стоек, тросовых заделок и пр. на усталостную прочность и долговечность. Стенд содержит раму с направляющей, две опоры для закрепления одного из концов соответствующих упругих элементов. Стенд также содержит размещенный в направляющей ползун с подвижными опорами для крепления вторых концов соответствующих упругих элементов и привод перемещения ползуна. Указанный привод включает передаточный механизм, палец которого связан с ползуном. На оси передаточного механизма закреплено большое зубчатое колесо, находящееся в зацеплении с малым зубчатым колесом, установленным на раме, диаметр которого в два раза меньше большого. На малом зубчатом колесе установлен уравновешивающий груз - дебаланс. В нейтральном положении передаточного механизма ползуна центр тяжести дебаланса находится над осью вращения малого зубчатого колеса. Технический результат - упрощение конструкции стенда. 5 ил.

 

Стенд для испытания упругих элементов на усталость относится к машиностроению и может быть использован для испытания упругих элементов: амортизационных стоек, тросовых заделок и пр. на усталость.

Известен стенд для испытания упругих элементов на усталость, содержащий раму с направляющей, две опоры для закрепления одного из концов соответствующих упругих элементов, размещенный в направляющей ползун с подвижными опорами для крепления вторых концов соответствующих упругих элементов, и привод перемещения ползуна, включающий кривошипный механизм, палец которого связан с ползуном (см. авт. свид. СССР №1401328, кл. G01M 17/04, 1988).

Недостатком известного стенда является большая энергоемкость используемого привода.

Известен стенд для испытания упругих элементов на усталость, содержащий раму с направляющей, две опоры для закрепления одного из концов соответствующих упругих элементов, размещенный в направляющей ползун с подвижными опорами для крепления вторых концов соответствующих упругих элементов, и привод перемещения ползуна, включающий кривошипный механизм, палец которого связан с ползуном, опоры установлены соосно направляющей и симметрично относительно ползуна, а стенд снабжен двумя находящимися в зацеплении зубчатыми колесами, одно из которых закреплено на оси кривошипа, а второе установлено на раме дополнительным кривошипом, закрепленным на втором колесе, и силовой пружиной, один конец которой связан с рамой, а другой - с дополнительным кривошипом, а диаметр первого зубчатого колеса в два раза больше диаметра второго зубчатого колеса (см. авт. свид. СССР №1803786, кл. G01N 3/32, 1993).

Недостаток известного стенда заключается в его сложности.

Задача изобретения - упрощение конструкции стенда. Поставленная задача достигается тем, что в стенде для испытания упругих элементов на усталость, содержащем раму с направляющей, две опоры для закрепления одного из концов соответствующих упругих элементов, размещенный в направляющей ползун с подвижными опорами для крепления вторых концов соответствующих упругих элементов и привод перемещения ползуна, включающий передаточный механизм, палец которого связан с ползуном, а на оси передаточного механизма закреплено большое зубчатое колесо, находящееся в зацеплении с малым зубчатым колесом, установленным на раме, диаметр которого в два раза меньше большего, на малом зубчатом колесе установлен уравновешивающий груз (дебаланс) так, что в нейтральном положении передаточного механизма ползуна центр тяжести дебаланса находится над осью вращения малого зубчатого колеса.

На фиг.1 изображен предлагаемый стенд, вид сбоку; на фиг.2 - то же, вид сверху; на фиг.3 - разрез А-А на фиг.2 стенда через ползун в положении, когда ползун максимально смещен вправо; на фиг.4 - упрощенная схема кривошипного механизма с упругими элементами, схема сил, действующих на кривошипный механизм, вывод формулы крутящего момента; на фиг.5 - палец кривошипного механизма в нейтральном положении.

Стенд состоит из рамы 1, на концах которой расположены неподвижные регулируемые винтовые опоры 2 с гайками 3, к которым крепится один из концов испытуемых упругих элементов 4 привода в виде электродвигателя 5 со шкивом 6, который посредством ремня 7 соединен со шкивом 8, сидящем на валу 9, который жестко соединен с шестерней 10. Вал 9 устанавливается в кронштейнах 11, расположенных на раме 1. В середине рамы 1 установлен вал кривошипного механизма 12 на подшипниках 13, на одном конце которого вне рамы 1 жестко закреплено зубчатое колесо 14, находящееся в зацеплении с шестерней 10. На палец 15 вала кривошипного механизма 12 насажен подшипник 16, который входит в прямоугольный паз 17 ползуна 18 с проушинами 19 для крепления подвижных концов соответствующих упругих элементов 4. Направляющими для ползуна 18 служат брусья рамы 1. Прямоугольный паз 17 своим наибольшим размером ориентирован по вертикали и поэтому вертикальные «биения» пальца 15 не передаются на ползун, в то время как горизонтальный размер паза выполнен с малым (тепловым) зазором относительно наружного размера подшипника 16 и поэтому ползун 18 отслеживает горизонтальные «биения» пальца 15, передавая их упругим испытуемым элементам 4.

С внешней стороны рамы 1 на оси 20 установлено зубчатое колесо 21, находящееся в зацеплении с колесом 14. Сверху на раме 1 закреплен счетчик циклов 23. Буквами обозначены: Б - направление действия силы тяжести; В - углы максимального крутящего момента уравновешивания; Г - положение центра тяжести груза при максимальном крутящем моменте уравновешивания; О - ось наибольшего эксцентриситета.

Стенд работает следующим образом.

В проушинах 19 закрепляются испытуемые упругие элементы 4 своими подвижными концами. Отпуская гайки 3, к неподвижным опорам 2 крепятся другие концы соответствующих упругих элементов 4. Включая двигатель 5 привода, поворачивают колесо 14 в такое положение, чтобы палец кривошипного механизма стал нейтрально, т.е. он не создаст натяга ни в одном из упругих элементов, расположенных горизонтально (см. фиг.5). Гайками 3 выбираются зазоры в сочленениях упругих элементов 4 с проушинами 19 и опорами 2, а если необходимо (по техническим требованиям к упругим элементам 4), то создаются или натяги или сжатия. Для фиксации колеса 14 в этом установочном (нейтральном) положении могут быть предусмотрены фиксаторы, а для его опознавания - риски или метки на колесе 14 или раме 1, при этом колесо 21 должно стоять так, чтобы центр тяжести груза 22 находился над осью его вращения (см. фиг.1).

При включении привода (двигателя 5) палец 15, поворачиваясь, начнет сжимать один из упругих элементов 4, а другой - растягивать, на что будет расходоваться энергия груза 22. При повороте колеса 14 на 90° один из упругих элементов 4 будет максимально сжат, а другой растянут, колесо 21 повернется на 180°, т.е. груз 22 полностью отдаст энергию, крутящий момент будет равен нулю, т.к. в этом положении плечо действия сил от упругих элементов будет равно нулю (l·cos90°=l·0=0) - см. фиг.4. При дальнейшем повороте на 90° упругие элементы 4 будут возвращать накопленную энергию, т.е. крутящий момент будет отрицательным. Эта энергия будет поглощена грузом 22. Далее процесс будет повторяться на других четвертях поворота колеса 14. При этом колесо 21 будет поворачиваться на 180°, т.к. его диаметр в 2 раза меньше диаметра зубчатого колеса 14 (фиг.1). Вес груза 22 найдем из условия равенства моментов, создаваемых на валу кривошипного механизма 12 (см. фиг.4) при sin2α=1, т.е. максимального момента от упругих элементов и момента на колесе 21, создаваемого грузом 22, расположенного на радиусе Rгр (см. фиг.1)

где с - жесткость упругого элемента,

l - эксцентриситет кривошипа,

Сгр - вес груза, кгс,

Rгр - радиус расположения центра тяжести груза.

От использования заявленного стенда для испытания упругих элементов на усталость в сравнении с прототипом по а.с. СССР №1803786 А1, принятым за базу сравнения, ожидается следующий положительный эффект:

1. Технические преимущества - обеспечение полного и точного уравновешивания крутящего момента грузом.

2. Общественно-полезные преимущества, производные от технических - снижены затраты труда и материалов.

Стенд для испытания упругих элементов на усталость, содержащий раму с направляющей, две опоры для закрепления одного из концов соответствующих упругих элементов, размещенный в направляющей ползун с подвижными опорами для крепления вторых концов соответствующих упругих элементов и привод перемещения ползуна, включающий передаточный механизм, палец которого связан с ползуном, а на оси передаточного механизма закреплено большое зубчатое колесо, находящееся в зацеплении с малым зубчатым колесом, установленным на раме, диаметр которого в два раза меньше большого, отличающийся тем, что на малом зубчатом колесе установлен уравновешивающий груз-дебаланс так, что в нейтральном положении передаточного механизма ползуна центр тяжести дебаланса находится над осью вращения малого зубчатого колеса.



 

Похожие патенты:

Изобретение относится к области транспортного машиностроения, а именно к методам стендовых испытаний подвески автомобиля, и может быть использовано, в частности, при диагностике ведущих осей, преимущественно переднеприводных автомобилей, в условиях автосервиса.

Изобретение относится к области испытаний амортизаторов и может быть использовано при проектировании вибрационной защиты различных технических систем и устройств.

Изобретение относится к устройствам для испытания транспортных средств и может быть использовано для испытаний гасящих элементов подвески колесных машин. .

Изобретение относится к машиностроению, в частности к стендам для испытания узлов автомобилей, и может быть использовано при испытании шаровых опор подвески легковых автомобилей.

Изобретение относится к оборудованию для проверки усилия пружинного элемента. .

Изобретение относится к испытательной технике и может быть использовано для выявления неисправностей систем подрессоривания автотранспортных средств. .

Изобретение относится к области технической диагностики транспортных средств. .

Изобретение относится к области технической диагностики транспортных средств, касается встроенных средств диагностирования автомобиля и может быть использовано для определения неисправного состояния тормозной системы и элементов трансмиссии автомобиля.

Изобретение относится к испытательной технике и может быть использовано, в частности, при испытании торсионов. .

Изобретение относится к устройствам для регистрации и касается устройства для регистрации перемещений подрессоренных масс транспортных средств с пневматическими шинами, содержащего корпус с пружиной, шайбой и пишущим узлом, кронштейн крепления корпуса к транспортному средству, экран с координатной бумагой.

Изобретение относится к машиностроению

Изобретение относится к области испытаний амортизаторов и может быть использовано при проектировании вибрационной защиты различных технических систем и устройств

Изобретение относится к устройствам для испытания транспортных средств, в частности к устройствам для испытания подвески транспортного средства с пневматическими шинами

Изобретение относится к устройствам для испытания амортизаторов

Изобретение относится к способам определения эффективности амортизаторов транспортных средств

Изобретение относится к средствам диагностики колеса воздушного судна

Изобретение относится к испытательной технике

Изобретение относится к области технической диагностики и контроля технического состояния транспортных средств и предназначено, в частности, для контроля за состоянием сочленений элементов подвески транспортного средства. Способ заключается в том, что в процессе воздействия площадками люфт-детектора на контролируемое сочленение производят его видеосъемку таким образом, чтобы предварительно нанесенные на элементы этого сочленения контрастные метки находились в кадре. В результате обработки изображений видеоряда определяют величину люфта Δ по максимальной разности положений меток и после сравнения величины люфта с нормативным его значением делают вывод о техническом состоянии контролируемого сочленения элементов подвески транспортного средства из условия Δ≤ΔH - состояние исправное, Δ>ΔH - состояние неисправное, где ΔH - установленный предельный норматив люфта. Технический результат - повышение точности измерения величины люфта в сочленении элементов подвески. 5 ил.

Стенд содержит основание, направляющие, привод, устанавливаемые с возможностью замены друг на друга кривошипно-ползунный механизм или сменные эксцентрики различных форм и размеров, предназначенные для имитации условий эксплуатации и контактирующие с роликом, устройство регулировки амплитуды колебаний, верхнюю и нижнюю плиты с фиксаторами и опорами для крепления гасителя, съемные упругие элементы, пластину с грузом, силоизмерительное устройство, П-образный корпус крепления верхней головки шатуна или ролика, контактирующего с эксцентриком. Опоры для крепления гасителя установлены с возможностью перемещения вдоль плит. Упругие элементы установлены с возможностью согласования длины с длиной гасителя. Плиты и пластина с грузом расположены на вертикальных направляющих и снабжены фиксаторами положения. Обеспечивается возможность проведения различных видов испытаний, моделирования различных режимов работы гасителей колебаний транспортных средств на одном стенде. 4 ил.

Изобретение относится к области испытательной техники, в частности к способам проведения однонаправленных испытаний на износ динамическим способом для определения механического ресурса шаровых шарниров передней подвески легкового автомобиля. Способ заключается в том, что через определенное количество циклов изменяется нагрузка на шатровый шарнир. Так же в определенные периоды происходит дополнительно включение и выключение бокового гидроцилиндра. Способ испытания осуществляется следующим образом: первые 50 тыс. циклов давление в гидросистеме 1,2 мПа; следующие 50 тыс. циклов дополнительно включается боковой гидроцилиндр. Далее шарнир снимают и проверяют его работоспособность и износ. Затем давление поднимают до 1,5 мПа и проводят еще 25 тыс. циклов, далее включают боковой гидроцилиндр еще на 25 тыс. циклов. Затем шарнир повторно снимают и проверяют. На третьем этапе испытаний давление поднимают до 1,8 мПа и проводят 25 тыс. циклов нагрузки. Далее подключают боковой гидроцилиндр на 25 тыс. циклов. Затем снимают и проверяют шарнир. После чего эксперимент повторяется с самого начала до достижения общей наработки в 1 млн циклов. Технический результат: упрощение испытаний шаровых шарниров передней подвески легкового автомобиля, максимальное приближение испытаний к реальным условиям эксплуатации и уменьшение времени испытаний. 3 ил.
Наверх