Способ изготовления планарного р-n перехода на основе высокоомного кремния р-типа проводимости

Изобретение относится к технологии изготовления полупроводниковых приборов. Способ согласно изобретению включает формирование планарной n+-области и защиту поверхности периферии n+-p перехода имплантацией ионов азота. Перед имплантацией ионов азота на поверхности p-типа непосредственно вокруг границы n-p перехода посредством легирования бором с дозой (0,8-1)·10 см2 формируют поверхностную область p+-типа проводимости заданной ширины. Изобретение обеспечивает улучшение параметров приборов на основе высокоомного кремния, и в частности - уменьшение обратного тока при рабочем напряжении прибора. 2 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к технологии изготовления полупроводниковых приборов, в частности к способам создания планарных p-n переходов на основе высокоомного (удельное сопротивление выше 6-7 Ом·см) кремния p-типа проводимости и их защиты с применением ионной имплантации.

Известен способ изготовления планарного p-n перехода на основе высокоомного кремния p-типа проводимости, в котором формирование p-n перехода проводилось ионной имплантацией фосфора с последующими отжигом при ступенчатом повышении температуры от 300 до 800°С и защитой поверхности путем имплантации ионов N+ в периферийную область p-n перехода, включая планарную границу, в двухступенчатом режиме, обеспечивающем создание на некотором расстоянии от поверхности высокоомной области n-типа проводимости и поверхностной пленки Si3N4 (см. В.П.Астахов и др. «Свойства pin-диодов, изготовленных внедрением ионов с изменяющейся энергией», Электронная техника, серия 7 ТОПО, вып.1 (110), 1982, с.52-54). Однако защитные свойства такой композиции ограничены низкими диэлектрическими свойствами пленки, из-за чего p-n переходы имеют повышенный уровень темнового тока.

Известен наиболее близкий к предлагаемому способ изготовления планарного p-n перехода на основе высокоомного кремния p-типа проводимости, в котором формирование n+-областей p-n перехода и охранного кольца производится имплантацией ионов фосфора с последующими отжигом, а защита поверхности осуществляется имплантацией периферии p-n перехода ионами Ar+ или N2+ с энергией 100 кэВ и дозой 6-1016 см-2 во всю поверхностную область p-типа с захватом бласти n+-типа на ˜0,2 мм (см. В.П.Астахов и др. «О возможности применения ионной имплантации при производстве pin-фотодиодов на кремнии», Прикладная физика, 6, 1999, с.26-31). Однако такой способ также не обеспечивает минимальные токи утечки по периферии p-n перехода и его стабилизацию.

Задачей, решаемой при использовании предлагаемого способа, является улучшение параметров приборов на основе высокоомного p-кремния. Техническим результатом при этом является уменьшение обратного тока при рабочем напряжении прибора.

Указанный технический результат достигается тем, что в способе изготовления планарного p-n перехода на подложке высокоомного кремния p-типа проводимости, включающем формирование планарной n-области и защиту поверхности имплантацией ионов азота по периферии n+-p перехода, перед имплантацией ионов азота на поверхности p-типа непосредственно вокруг границы n+-p перехода легированием бором с дозой (0,8-1)·1013 см-2 формируют поверхностную область p+-типа проводимости шириной не менее

,

d - ширина поверхностной области p+-типа проводимости;

ε - абсолютная диэлектрическая проницаемость кремния;

V -рабочее напряжение n+-p перехода;

е - заряд электрона;

Р - концентрация дырок в p-кремнии.

В частных случаях выполнения создание поверхностной области p+-типа проводят имплантацией ионов В+ с энергией 40-60 кэВ с последующим отжигом при температуре 900-1000°С в течение не менее 1 часа, а имплантацию ионов азота осуществляют ионами N2+ с энергией 80-100 кэВ и дозой (1-3)·1016 см-2, при этом внешняя граница области имплантации ионов N2+ соответствует или находится за внешней границей области p+-типа, а внутренняя - находится на поверхности n+-области на расстоянии не менее 10 мкм от планарной границы n+-p перехода.

Главной трудностью при создании p-n переходов на основе p-Si является защита поверхности, поскольку при удельном сопротивлении p-Si выше 6-7 Ом·см и типичных значениях встроенного положительного заряда в защитных пленках Qss=(1-10)·1011 см-2 на поверхности кремния всегда присутствует инверсионный канал, сопротивление которого шунтирует p-n переход, причем сопротивление канала резко уменьшается при увеличении удельного сопротивления p-Si.

При имплантации периферии p-n перехода, в основном поверхности p-области, ионами азота (N+ или N2+) с энергией 20-100 кэВ и высокими дозами, соответствующими началу формирования пленки Si3N4, образуется поверхностный дефектный компенсированный слой, в который слабо проникает поле поверхностного заряда, благодаря чему инверсионный слой значительно утоняется, резко увеличивая сопротивление канала и уменьшая темновой ток. Эффективность такой обработки ионами азота повышается, если предварительно провести легирование поверхности p-области бором до такой степени, чтобы предотвратить формирование канала. Реально это гарантирует доза легирования в 8-10 раз превышающая максимальную величину Qss. Такой дозой является доза, составляющая величину (0,8-1)·1013 см-2. Легирование указанной дозой целесообразно производить имплантацией ионов В+ с энергией 40-60 кэВ с последующим отжигом при температуре 900-1000°С.

Для достижения максимального эффекта область имплантации ионов В+ должна захватывать поверхность p-области от самой границы n+-p перехода до планарной границы области пространственного заряда n+-p перехода при рабочем напряжении, расстояние до которой определяется формулой (1).

Технический результат достигается за счет того, что легирование приповерхностной области бором в выбранных режимах приводит к исключению инверсионных поверхностных каналов на p-области, а при последующей имплантации ионов азота происходит компенсация материала приповерхностной области кристалла до удельного сопротивления собственного кремния, что и минимизирует или исключает поверхностные утечки. При этом область имплантации ионов азота должна включать в себя всю (допустимо и с некоторым запасом) поверхностную p+-область с небольшим (˜10 мкм) захватом n+-области для того, чтобы гарантировать отсутствие на поверхности p-области вблизи планарной границы n+-p перехода даже небольших необработанных участков. Наличие таких участков и увеличение их площади приводит к увеличению тока утечки.

В соответствии с предложенным формирование поверхностной p+-области является эффективным средством ликвидации поверхностных каналов, если концентрация акцепторов в ней составляет 5·1016-1017 см-3 при ее толщине не менее 1-1,5 мкм. Такая область создается при легировании бором дозой (0,8-1)·1013 см-2 которое целесообразно производить ионной имплантацией бором с энергией 40-60 кэВ с последующим отжигом в нейтральной атмосфере при температуре 900-1000°С в течение не менее 1 часа. Нижняя граница используемых доз имплантации при выбранных температурах отжига гарантированно обеспечивает компенсацию поверхностного заряда акцепторными центрами. Превышение верхней границы доз имплантации ионов В+ снижает эффективность компенсации поверхностного слоя при последующей обработке ионами азота. Отжиг в нейтральной атмосфере, например осушенном азоте, при температуре 900-1000°С в течение не менее 1 часа при заданных энергии ионов В+ и дозах обеспечивает полную активацию атомов бора и формирование легированного слоя с указанными выше значениями концентрации акцепторов и толщин слоя.

Применение ионов N2+ при последующей имплантации, направленной на создание компенсирующих центров в p+-области, а также формирование поверхностной пленки Si3N4 обусловлено большей эффективностью дефектообразования в кремнии ионов N2+ по сравнению с ионами N+ при меньшей глубине проникновения. При этом энергия ионов N2+ и доза имплантации по сравнению с прототипом могут быть уменьшены. Технический результат достигается при энергиях 80-100 кэВ и дозах (1-3)·1016 см-2. Уменьшение энергии и дозы имплантации ионов N2+ ниже указанных значений заметно увеличивает темновые токи из-за снижения эффективности дефектообразования, а увеличение нецелесообразно, поскольку не приводит к уменьшению уровня темновых токов. Величины энергий ионов обеспечиваются устойчивым режимом работы установок ионной имплантации. Внешняя граница области имплантации должна соответствовать или находиться за внешней границей области р+-типа, а внутренняя - на поверхности n+-области на расстоянии не менее 10 мкм от планарной границы n+-p перехода для обеспечения гарантии ее обработки ионами N2+.

Сущность предлагаемого изобретения поясняется чертежом, на котором последовательно изображены структуры областей в подложке после каждой операции способа изготовления планарного p-n перехода: а) подложка высокоомного кремния p-типа проводимости со сформированной в ней n+-областью; б) структура после операции легирования бором (формирования p+-области); в) структура после операции имплантации азота (формирования поверхностной компенсированной области).

Согласно предложенному способу были изготовлены 3 партии образцов на подложках кремния p-типа проводимости со следующими значениями концентрации дырок в p-кремнии (Р) 2·1012 см-3, 8·1012 см-3, 1,5·1013 см-3 для работы при напряжении n+-p перехода (V) 200 В. Данные по изготовлению приведены в таблицах 1, 2, 3 соответственно.

Таким образом, как следует из данных таблиц 1-3, выполнение условий предлагаемого способа обеспечивает минимальный уровень темнового тока p-n переходов на основе высокоомного кремния p-типа проводимости.

1. Способ изготовления планарного p-n перехода на подложке высокоомного кремния p-типа проводимости, включающий формирование планарной n+-области и защиту поверхности периферии n+-p перехода имплантацией ионов азота, отличающийся тем, что перед имплантацией ионов азота на поверхности p-типа непосредственно вокруг границы n-p перехода легированием бором с дозой (0,8-1)·1013 см2 формируют поверхностную область p+-типа проводимости шириной не менее

где d - ширина поверхностной области p+-типа проводимости;

ε - абсолютная диэлектрическая проницаемость кремния;

V - рабочее напряжение n+-p перехода;

е - заряд электрона;

Р - концентрация дырок в p-кремнии.

2. Способ изготовления планарного p-n перехода на основе высокоомного кремния p-типа проводимости по п.1, отличающийся тем, что легирование бором проводят имплантацией ионов B+ с энергией 40-60 кэВ с последующим отжигом при температуре 900-1000 С в течение не менее 1 ч.

3. Способ изготовления планарного p-n перехода на основе высокоомного кремния p-типа проводимости по п.1 или 2, отличающийся тем, что имплантацию ионов азота осуществляют ионами N2+ с энергией 80-100 кэВ и дозой (1-3)·1016 см-2, причем внешняя граница области имплантации соответствует или находится за внешней границей области p+-типа, а внутренняя - находится на поверхности n+-области на расстоянии не менее 10 мкм от планарной границы n+-p перехода.



 

Похожие патенты:
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов со структурой кремний- на- изоляторе, с пониженной плотностью дефектов.

Изобретение относится к области производства полупроводниковых приборов и устройств и может использоваться для формирования p-n переходов в кремнии. .

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления приборов с низким током утечки. .

Изобретение относится к области технологии производства тонких плоскопараллельных пластин из хрупких кристаллических материалов и может быть использовано при изготовлении полупроводниковых устройств типа "полупроводник на изоляторе", а также поверхностных субмикронных углублений различного геометрического профиля при производстве микроэлектронных устройств.
Изобретение относится к области получения сверхпроводников, в частности к способу синтеза сверхпроводящего интерметаллического соединения в пленках, например станнида ниобия Nb3 Sn, и может быть использовано в электротехнической, радиотехнической и других отраслях промышленности при формировании многоуровневой сверхпроводящей схемы внутри пленочного несверхпроводящего покрытия.

Изобретение относится к области легирования твердых тел путем их облучения пучком ионов из фазообразующих атомов и может быть использовано для структурно-фазовой модификации твердых тел, например для улучшения их физико-механических, коррозионных и других практически важных свойств.

Изобретение относится к области производства полупроводниковых приборов и может быть использовано в технологии для формирования в кристаллах областей с различным типом и величиной электропроводности с помощью имплантации ионов средних (10-5000 кэВ) энергий.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов со структурой кремний на изоляторе, с пониженной плотностью дефектов
Изобретение относится к полупроводниковой технологии, в частности к способам получения гетероэпитаксиальных структур кремния на сапфире, и может быть использовано в электронной технике при изготовлении полупроводниковых приборов

Изобретение относится к области технологии и изготовления полупроводниковых приборов и интегральных схем
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов - кремний на изоляторе с высокой радиационной стойкостью

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзисторов кремний-на-изоляторе, с низкой плотностью дефектов
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур, с пониженной плотностью дефектов
Использование: в технологии производства полупроводниковых приборов. Сущность изобретения: полупроводниковый прибор формируют путем двойной имплантации в область канала сфокусированными пучками ионов бора дозой 6×1012-6×1013 см-2 с энергией 20 кэВ и ионов мышьяка с энергией 100 кэВ дозой (1-2)×1012 см-2 с последующим отжигом при температуре 900-1000°С в течение 5-15 секунд. Техническим результатом изобретения является снижение порогового напряжения в полупроводниковых приборах, улучшение параметров приборов, повышение качества и увеличение процента выхода годных. 1 табл.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов. В способе изготовления полупроводниковой структуры в предварительно аморфизированную поверхность кремниевой подложки ионами кремния с большой дозой внедряют ионы бора с энергией 25 кэВ, что позволяет воспроизводимо формировать мелкие сильнолегированные р-слои с меньшими кристаллическими нарушениями и лучшими электрическими параметрами. Далее выполняют отжиг в два этапа. Изобретение обеспечивает снижение плотности дефектов в полупроводниковых структурах, улучшение параметров структур, повышение качества и увеличение процента выхода годных. 1 табл.

Изобретение относится к материаловедению. Пленка оксида кремния на кремниевой подложке, имплантированная ионами олова, включает нанокластеры альфа-олова. Толщина пленки составляет 80÷350 нм, средняя концентрация олова находится в пределах от 2,16 до 7,1 атомных процентов, нанокластеры альфа-олова имеют радиус от 1,5 до 4 нм. Пленка имеет увеличенную интенсивность и уменьшенную ширину полосы фотолюминесценции в диапазоне 700÷1100 нм. 2 ил., 1 табл., 5 пр.

Изобретение относится к технологии изготовления полупроводниковых приборов

Наверх