Способ получения раствора полиамидокислоты на основе 4,4'-диаминотрифениламина

Описан способ получения раствора полиамидокислоты поликонденсацией смеси 4,4'-диаминотрифениламина с ароматическими диаминами и диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты или его смеси с диангидридами ароматических тетракарбоновых кислот в амидном растворителе при перемешивании, причем в качестве одного из ароматических диаминов в смеси с 4,4'-диаминотрифениламином используют 5(6)-амино-2-(4-аминофенил)бензимидазол и поликонденсацию ведут при отношении суммы молей ароматических диаминов к сумме молей диангидридов ароматических тетракарбоновых кислот, равном 1,00:(≤1,00). Преимуществом описанного способа является предотвращение образования студня полимера при получении больших объемов раствора полиамидокислоты, что обеспечивает возможность организации промышленного производства, возможность получения более концентрированных растворов полимера, пригодных для нанесения покрытий, формования пленок и волокон. 4 з.п. ф-лы, 1 табл.

 

Изобретение относится к высокомолекулярным соединениям, конкретно к способу получения раствора полиамидокислоты на основе 4,4'-диаминотрифениламина, используемого для формирования беспористых покрытий на металлических и керамических подложках при производстве плат, применяющихся в электронной технике, а также для нанесения лаковых покрытий на провода, синтетические волокна и жгуты из них, для формирования пленок и волокон.

Известно, что раствор полиамидокислоты получают путем поликонденсации ароматического диамина и диангидрида тетракарбоновой кислоты в среде полярного растворителя, причем диангидрид берут в эквимольном и с избытком 1-5% мольных по отношению к диамину (Астахин В.В., Трезвов В.В., Суханова И.В. Электроизоляционные лаки, пленки и волокна. - М.: Химия, 1986. - 157 с.).

В качестве прототипа нами рассматривается способ получения раствора полиамидокислоты, используемого при получении беспористых покрытий, взаимодействием в среде амидного растворителя 4,4'-диаминотрифениламина (I) или его смеси с, по крайней мере, одним из диаминов формулы H2N-A-NH2 (II), где

A=мета-Ph, -Ph-Z-Ph-, где Z=-O-, пара -O-Ph-O-, мета -O-Ph-O-, -O-Ph-SO2-Ph-O-, с диангидридом формулы

O=(CO)2=Ph-X-Ph=(CO2)=O (III), где Х=-СО-, пара-С(О)-Ph-С(O), мета -С(O)-Ph-С(O)-, -О-Ph-С(O)-Ph-O-, -SO2-, -О-Ph-SO2-Ph-O-, или его смеси с, по крайней мере, одним из диангидридов формулы

O=(CO2)=Ph-Y-Ph=(CO)2=O (IV), где Y=-O-, пара -O-Ph-O-, мета -О-Ph-O-, σ-связь или Х причем X≠Y (Патент РФ №2019548, МПК C08G 73/10; опубл. 15.09.94. Бюл. №17).

Синтез полиамидокислоты проводят поликонденсацией в амидном растворителе 4,4'-диаминотрифениламина или его смеси с диаминами указанного строения и диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты или его смеси с диангидридами указанного строения, причем мольное соотношение суммы взятых диаминов и диангидридов равно 1:1.

Процесс образования полиамидокислоты протекает по схеме:

Полиамидокислота, полученная с использованием 4,4'-диамино-трифениламина, после термообработки дает беспористое полиимидное покрытие, характеризующееся очень высокими диэлектрическими характеристиками, механической прочностью, эластичностью и адгезией к подложке.

Недостатком известного способа является склонность раствора полиамидокислоты на основе 4,4'-диаминотрифениламина и диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты к студнеобразованию при проведении поликонденсации с объемом реакционной массы более 500 см3, что препятствует его практическому использованию.

При воспроизведении примеров известного способа (прототипа), когда объем реакционной массы в процессе поликонденсации составлял 160 см3 и концентрация лака была около 10 мас.%, получались стабильные текучие растворы полимера, пригодные для нанесения на подложку и формирования покрытий.

Однако при попытках наработать в условиях прототипа большие количества лака - около 730 г в реакторе объемом 2 дм3 с целью производства изделий на его основе наблюдалось образование студней растворов полимеров, непригодных для формирования тонкопленочных покрытий, пленок и волокон. Аналогичное явление наблюдалось и при попытке наработки 7,5 кг лака в реакторе объемом 10 дм3.

Образование не текучих не поддающихся перемешиванию студней ведет к резкому повышению сопротивления перемешиванию, выходу из строя электродвигателей приводов мешалок реакторов, необходимости ручной выгрузки из реактора упругого каучукоподобного студня и последующей его утилизации или обезвреживания.

Таким образом, известный способ получения целевого продукта пригоден сугубо для лабораторного применения или для наработки небольших партий продукта.

Основной технологической характеристикой раствора полиамидокислоты в амидном растворителе (полиамидокислотного лака) является удельная или логарифмическая вязкость 0,5%-ного раствора полиамидокислоты (Соколов Л.Б. Основы синтеза полимеров методом поликонденсации. - М.: Химия, 1979. - 236 с.; ТУ 6-05-1890-85 Диангидрид 3,3'4,4'-бензофенонтетракарбоновой кислоты). Для обеспечения возможности эффективного применения лака вязкость 0,5%-ного раствора полимера на стадии поликонденсации должна быть в пределах 1,3-2,8. При образовании студней на стадии поликонденсации вязкость раствора полимера вообще невозможно определить.

Целью настоящего изобретения является улучшение технологии получения концентрированного раствора полиамидокислоты на основе 4,4'-диаминотрифениламина за счет предотвращения студнеобразования на стадии поликонденсации.

Поставленная цель достигается тем, что в способе получения полиамидокислоты путем поликонденсации смеси 4,4'-диаминотрифенил-амина с ароматическими диаминами и диангидрида 3,3'4,4'-бензофенон-тетракарбоновой кислоты или его смеси с диангидридами ароматических тетракарбоновых кислот в амидном растворителе при перемешивании в качестве одного из ароматических диаминов используют 5(6)-амино-2-(4-аминофенил)бензимидазол и поликонденсацию ведут при отношении суммы молей ароматических диаминов к сумме молей диангидридов ароматических тетракарбоновых кислот, равном 1,00:(≤1,00).

Согласно изобретению в качестве добавки к 4,4'-диамино-трифениламину (Ia), кроме 5(6)-амино-2-(4-аминофенил)бензимидазола (Ib), могут быть использованы 4,4'-диаминодифенилоксид (Ic), бис-1,3-(4-амино-фенокси)бензол (Id), пара-фенилендиамин (Ie) или мета-фенилендиамин (If)

В качестве добавки к диангидриду 3,3'4,4'-бензофенонтетракарбоновой кислоты (IIа) могут быть использованы диангидрид пиромеллитовой кислоты (IIb), диангидрид 3,3'4,4'-дифенилтетракарбоновой кислоты (IIc), диангидрид 3,3'4,4'-дифенилоксидтетракарбоновой кислоты (IId), диангидрид 3,3'4,4'-дифенилсульфонтетракарбоновой кислоты (IIe) или диангидрид бис(3,4-ди-карбоксифенокси)дифенилпропана-2,2 (IIf).

В качестве амидного растворителя могут быть использованы диметилформамид (ДМФА), N,N-диметилацетамид (ДМАА), N-метил-пирролидон (NМП) или их смеси.

Концентрация полиамидокислоты в растворе может изменяться в пределах 5-18% в зависимости от назначения.

Раствор полиамидокислоты может быть использован для получения формованных изделий или формирования пленочных покрытий непосредственно после поликонденсации или после обработки смесью уксусного ангидрида (УА) и триэтиламина (ТЭА) в мольном соотношении сумма ароматических аминов: УА: ТЭА, равном 1:(0,4-0,9):(0,8-2,2). В результате происходит частичная циклизация от 20 до 45% полиамидо-кислотных звеньев полимерной цепи в полиимидные. Такая обработка способствует увеличению длительности хранения раствора без желирования и образования геликов в интервале температур от -10÷30°С.

Однако, если лак используют для целей формования непосредственно после синтеза или в период до 1 месяца хранения при температуре 5-15°С, обработку смесью УА и ТЭА можно не производить.

Значения логарифмической вязкости 0,5%-ных растворов полиамидокислот в соответствующем растворителе , полученных по предлагаемому способу, изменяются в интервале от 1,2 до 2,8 дл/г в зависимости от структуры реагентов, природы растворителя и концентрации раствора.

Изобретение иллюстрируется следующими примерами.

Пример 1. В реактор цилиндрической формы емкостью 2 дм3, снабженный эффективной мешалкой, вводят 32,22 г (0,117 г·моля)

4,4'-диаминотрифениламина (Ia), 1,615 г (0,0072 г·моля) 5(6)-амино-2-(4-аминофенил)бензимидазола (Ib), 11,173 г (0,0558 г·моля) 4,4'-диамино-дифенилоксида (Ic) и 508,4 см3 N-метилпирролидона (NМП). Мольное соотношение диаминов составляет Ia:Ib:Ic=0,65:0,04:0,31. Массу перемешивают в течение 30 минут до полного растворения диаминов. Далее порциями при эффективном перемешивании, поддерживая температуру в массе в пределах 19-24°С, вносят в течение 40 минут 57,98 г (0.180 г·моля) диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты (IIa). Мольное соотношение суммы диаминов к диангидриду IIa равно 1,00:1,00.

После завершения добавления IIа массу перемешивают при 19-24°С в течение 1 часа.

Далее в реакционную массу постепенно, в течение 40 минут, при температуре 30-40°С вносят заранее приготовленную смесь, состоящую из 12,77 г (0,125 г·моля) уксусного ангидрида (УА), 20,96 г (0,21 г·моля) триэтиламина (ТЭА) и 86 см3 N-метилпирролидона (NМП). Мольное соотношение сумма диаминов:УА:ТЭА=1:0,69:1,15. По окончании процесса массу фильтруют через фильтр Шотта №160 при комнатной температуре. Получают 731,1 г 14,1%-ного раствора полиамидокислоты. Логарифмическая вязкость 0,5%-ного раствора 1,83 дл/г.

Пример 2. В реакторе и в условиях, описанных в примере 1, проводят получение раствора полиамидокислоты, применяя смесь, состоящую из трех ароматических диаминов -4,4'-диаминотрифениламина (Ia), 5(6)-амино-2-(4-аминофенил)бензимидазола (Ib) и 4,4'-диаминодифенилоксида (Ic), взятых в мольном соотношении Ia:Ib:Ic=0,65:0,04:0,31. Загрузка диаминов составляет: Ia - 32,22 г (0,117 г·моля), Ib - 1,615 г (0,0072 г·моля), Ic - 11,173 г (0,0558 г·моля). Диангидрид 3,3'4,4'-бензофенонтетракарбоновой кислоты (IIа) вводят в синтез в количестве 56,84 г (0,1764 г·моля), что соответствует мольному соотношению сумма диаминов: IIa=1,00:0,98. Растворитель NМП берут в количестве 508,4 см3. Смесь уксусного ангидрида и триэтиламина вводят в синтез в том же количестве, что и в примере 1. Получают 730 г 13,95%-ного раствора полиамидокислоты. Логарифмическая вязкость 1,35 дл/г.

Пример 3. Синтез ведут в условиях примера 2, но при мольном соотношении диаминов Ia:Ib:Ic=0,65:0,33:0,02. Загрузка диаминов составляет Ia - 32,22 г (0,117 г·моля), Ib - 0,807 г (0,0036 г·моля), Ic - 11,894 г (0,0594 г·моля). Загрузки диангидрида IIa, NМП, уксусного ангидрида и триэтиламина те же, что и в примере 2. Мольное соотношение сумма диаминов: IIa=1,00:0,98. Получают 729,9 г 13,94%-ного раствора полиамидокислоты. Логарифмическая вязкость 1,86 дл/г.

Пример 4. Синтез раствора полиамидокислоты ведут в условиях примера 2, но без добавления смеси уксусного ангидрида и триэтиламина. Вместо него вводят эквивалентное по объему количество NМП.

Получают 730 г 13,95%-ного раствора полиамидокислоты. Логарифмическая вязкость 1,92 дл/г.

Пример 5. Синтез раствора полиамидокислоты ведут в условиях примера 1 в реакторе объемом 10 дм3. Загрузки в реактор составляют: Ia - 322,2 г (1,17 г·моля), Ib - 16,15 г (0,072 г·моля), Ic - 111,73 г (0,558 г·моля), NМП - 5,1 дм3, IIa - 579,8 г (1,80 г·моля). Мольное соотношение сумма диаминов: IIa=1,00:1,00. На стадии частичной циклизации загрузки составляют: уксусный ангидрид 127,7 г (1,25 г·моля), триэтиламин 209,6 г (2,10 г·моля), NМП - 0,86 дм3.

Получают 7,3 кг 14,1%-ного раствора полиамидокислоты. Логарифмическая вязкость 1,44 дл/г.

Пример 6. Синтез раствора полиамидокислоты ведут в условиях примера 2 в реакторе объемом 25 дм3. Получают 18,2 кг 14,1%-ного раствора полиамидокислоты. Логарифмическая вязкость 2,03 дл/г.

Таким образом предлагаемый способ позволяет устойчиво получать раствор полиамидокислоты на основе 4,4'-диаминотрифениламина в амидном растворителе в условиях производственного процесса, масштабного переноса технологии, что очень важно при необходимости увеличения выпуска раствора полимера.

Весь полученный в примерах 1-6 полиамидокислотный лак использован для нанесения диэлектрического полиимидного слоя на металлические подложки из алюминия, которые применяются в производстве гибридных интегральных схем для различных электронных приборов.

Полученные полиимидные слои имели высокие тепловые, диэлектрические и механические характеристики:

- термостойкость - 430°С на воздухе и до 500°С в инертной атмосфере;

- объемное сопротивление - 1015-1016 Ом·см;

- диэлектрическая проницаемость 3,2-3,3 (1 кГц);

- тангенс угла диэлектрических потерь (2-4)·10-3 (1 кГц);

- диэлектрическая прочность >1,6·106 В/см;

- предел прочности пленки при растяжении 120-140 МПа;

- адгезия к алюминиевой подложке >25 МПа.

Дополнительные примеры 7-13, иллюстрирующие предлагаемый способ, приведены в таблице.

Преимуществами предлагаемого способа по сравнению с прототипом являются предотвращение образования студня полимера при получении больших объемов раствора полиамидокислоты, что обеспечивает возможность организации промышленного производства, возможность получения более концентрированных растворов полимера, пригодных для нанесения покрытий, формования пленок и волокон.

1. Способ получения раствора полиамидокислоты поликонденсацией смеси 4,4'-диаминотрифениламина с ароматическими диаминами и диангидрида 3,3'4,4'-бензофенонтетракарбоновой кислоты или его смеси с диангидридами ароматических тетракарбоновых кислот в амидном растворителе при перемешивании, отличающийся тем, что в качестве одного из ароматических диаминов в смеси с 4,4'-диаминотрифениламином используют 5(6)-амино-2-(4-аминофенил)бензимидазол и поликонденсацию ведут при отношении суммы молей ароматических диаминов к сумме молей диангидридов ароматических тетракарбоновых кислот, равном 1,00:(≤1,00).

2. Способ по п.1, отличающийся тем, что в качестве ароматических диаминов в смеси 4,4'-диаминотрифениламина и 5(6)-амино-2-(4-аминофенил)бензимидазола используют 4,4'-диаминодифенилоксид, бис-1,3-(4-аминофенокси)бензол, парафенилендиамин или метафенилендиамин.

3. Способ по п.1, отличающийся тем, что в качестве диангидридов ароматических тетракарбоновых кислот в смеси с диангидридом 3,3'4,4'-бензофенонтетракарбоновой кислоты используют диангидриды пиромеллитовой кислоты, 3,3'4,4'-дифенилтетракарбоновой кислоты, 3,3'4,4'-дифенилоксидтетракарбоновой кислоты, 3,3'4,4'-дифенилсульфонтетракарбоновой кислоты или диангидрид бис(3,4-дикарбокси-фенокси)дифенилпропана-2,2.

4. Способ по п.1, отличающийся тем, что в качестве амидного растворителя используют N,N-диметилформамид, N,N-диметилацетамид N-метилпирролидон или их смеси.

5. Способ по п.1, отличающийся тем, что полученный раствор полиамидокислоты обрабатывают смесью уксусного ангидрида и триэтиламина в виде раствора в амидном растворителе при мольном отношении сумма ароматических диаминов : уксусный ангидрид : триэтиламин, равном 1:(0,4-0,9):(0,8-2,2).



 

Похожие патенты:

Изобретение относится к полимерному лиганду с антраниламидными звеньями в основной цепи и к металл-полимерному комплексу, в котором полимерный лиганд образует люминесцирующие комплексы с ионами редкоземельных элементов.

Изобретение относится к усовершенствованному способу получения галогенфталевой кислоты, включающему смешивание от 3 до 7 весовых частей уксусной кислоты с 1 весовой частью галоген-орто-ксилола, с от 0,25 до 2 мол.

Изобретение относится к способу получения алкенилсукцинимидов путем алкилирования малеинового ангидрида полиальфаолефином или полиизобутиленом, у которых содержание атомов углерода С 10-30, молекулярная масса 800-1000 в присутствии инициатора сначала при температуре 60-100°С в течение 0,5-1 ч, затем при 165-175°С в течение 3,5-4,5 ч при мольном соотношении полиальфаолефин (полиизобутилен):малеиновый ангидрид = 1:1-1,1, с последующей конденсацией полученного алкенилянтарного ангидрида в присутствии масла с 5-метил-1,4,7,10-тетраминодеканом или 8-метил-1,4,7,10,13,16-гексаминогексадеканом сначала при 30-58°С в течение 0,5-1,0 ч, затем при 136-145°С в течение 3,5-4,0 ч в мольном соотношении алкенилянтарный ангидрид:амин = 1-1,5:1.

Изобретение относится к способу получения имидов алкенилянтарной кислоты путем алкилирования малеинового ангидрида полиальфаолефинами (с содержанием атомов углерода С10-30) молекулярной массой 750-1200 в присутствии инициатора сначала при 60-100°С в течение 1-1,5 часов, с последующим повышением температуры до 160-170°С в течение 3-4 часов и выдержкой при 175-180°С в течение 0,5 часов в мольном соотношении полиальфаолефин: малеиновый ангидрид =1:1-1,1, с последующей конденсацией алкилированного малеинового ангидрида смесью, содержащей полиэтиленполиамины при 50-110°С в течение 1-1,5 часов с последующим нагреванием при 135-145°С в течение 3,5-4 часов в мольном соотношении алкилированный малеиновый ангидрид: смесь (полиэтиленполиамин) =1:1-1,1 в среде масла или ароматических углеводородов.
Изобретение относится к способу получения алкенилсукцинимидов путем взаимодействия малеинового ангидрида с полиальфаолефином или полиизобутиленом, у которых содержание атомов углерода С 10-30, молекулярная масса 700-1100 в присутствии инициатора сначала при температуре 70-90°С в течение 0,5-1,0 ч, затем при 165-175°С в течение 3-4 часов при мольном соотношении полиальфаолефин (полиизобутилен): малеиновый ангидрид =1:1-1,1, с последующей конденсацией полученного алкенилянтарного ангидрида в масле с полипропиленполиаминами при 40-70°С в течение 0,5-1,5 ч, затем при 140-145°С в течение 4-4,5 ч.

Изобретение относится к способу получения полиимидных материалов, которые могут быть использованы в авиации, автомобиле- и судостроении, строительстве, а также при производстве прочных негорючих полиимидных материалов в форме пленок, пенопластов, порошков.

Изобретение относится к способу получения разветвленных сополиимидов на основе 4,5-бис-(3-аминофенокси)фталевой и аминофеноксифталевых кислот, которые могут быть использованы для создания новых полимерных материалов, сочетающих термостойкость с возможностью переработки и с наличием заданного количества функциональных групп, способных к полимераналогичным превращениям.

Изобретение относится к способу получения сверхразветвленных полиимидов на основе новой 4,5-бис-(3-аминофенокси)фталевой кислоты, которые могут быть использованы для создания новых полимерных материалов, сочетающих термостойкость с возможностью переработки и с наличием заданного количества функциональных групп, способных к полимераналогичным превращениям.

Изобретение относится к одностадийному способу получения сополиимидов на основе аминофеноксифталевых кислот, которые могут быть использованы при изготовлении материалов, обладающих высокой термостойкостью.

Изобретение относится к полиимидному сополимеру и металлическому ламинату, содержащему его, который применяют в качестве гибкой платы. .

Изобретение относится к области получения нового 4-(4-[N-этил-2-гидроксиэтиламино]-фенилазо)-фталонитрила для получения полимеров с нелинейными оптическими свойствами, обладающих высоким коэффициентом генерации второй гармоники и используемых в качестве модуляторов световых пучков, световолоконных переключателей, генераторов гармоник лазерного излучения для повышения емкости записи, фоторефрактивных сред для обратимой записи голограмм с дифракционной эффективностью, близкой к 100%, и т.п

Изобретение относится к синтезу полиимидов, а именно к способу применения цитраконового ангидрида и итаконового ангидрида

Изобретение относится к технологии получения полиимидных волокон, в частности к способу приготовления полиамидокислотных растворов для получения указанных волокон
Изобретение относится к области получения полиимидов, а именно к способу получения полиимидов в виде пресс-порошков

Изобретение относится к области получения полимеров, а именно к способу получения полиамидокислоты и полиимидов на ее основе
Изобретение относится к области получения композиционных материалов, а именно к стеклопластиковому сотовому заполнителю, и способу получения

Изобретение относится к полимерным материалам, конкретно к полиимидам и сополиимидам
Изобретение относится к связующему для нагревостойких профильных стеклопластиков электротехнического назначения

Изобретение относится к композициям на основе полиимидных смол, применяемым для получения покрытий
Изобретение относится к области нефтехимического синтеза, в частности к способу получения полиэтиленсукцинимида, используемого, например, в качестве моющей и диспергирующей присадки в составе моторных масел
Наверх