Способ сборки объективов, работающих в инфракрасной области спектра


 


Владельцы патента RU 2355002:

Открытое акционерное общество "ЛОМО" (RU)

Способ включает установку имитатора каждой линзы, изготовленного из материала, прозрачного в видимой области спектра, в свою оправу, закрепление имитатора линзы в «плавающем» патроне станка так, чтобы центр кривизны базовой поверхности имитатора линзы совпадал с центром качания чашки «плавающего» патрона станка. Подвижками оправы в «плавающем» патроне станка при контроле автоколлимационным микроскопом выставляют автоколлимационные изображения центров кривизны двух оптических поверхностей имитатора линзы на ось вращения шпинделя станка. После чего извлекают имитатор линзы из оправы, а на его место устанавливают линзу объектива, при этом происходит самоцентрирование невидимой поверхности линзы. Затем разворотом чашки «плавающего» патрона станка при контроле автоколлимационным микроскопом выставляют автоколлимационное изображение центра кривизны видимой оптической поверхности линзы на ось вращения шпинделя станка, после чего обрабатывают торцевые и цилиндрические поверхности оправы. Технический результат - повышение точности сборки объективов с линзами, непрозрачными в видимой области спектра, и расширение их функциональных возможностей.

 

Предлагаемое изобретение относится к области оптического приборостроения и может быть использовано при сборке объективов для тепловизионных приборов, приемники которых чувствительны в дальней инфракрасной (ИК) области спектра.

Развитие отечественной и зарубежной электронной промышленности в области создания матричных болометрических приемников, чувствительных в дальних областях спектра (8-14) мкм, идет в направлении уменьшения размеров пикселя чувствительной площадки болометрической матрицы.

Одним из основных критериев качества объектива, используемых при оценке возможности его применения для совместной работы с болометрическими матрицами, является концентрация энергии в пятне рассеяния объектива, характеризуемая диаметром кружка, в котором заключен определенный процент полной энергии, прошедшей через объектив.

Этот диаметр можно сопоставить с размером пикселя чувствительной площадки болометрической матрицы, тенденция уменьшения которой требует создания объективов с большей разрешающей способностью, при изготовлении которых необходимо обеспечить более высокую точность центрирования линз в объективе.

Линзы объективов, работающих с приемниками, чувствительными в дальних областях спектра (8-14) мкм, изготавливаются из материалов, непрозрачных в видимой области спектра.

Существующий способ сборки объективов с линзами, непрозрачными в видимой области спектра, основан на установке линз в корпус объектива [1]. При этом способе децентрировка центров кривизны поверхностей линз относительно оси корпуса объектива определяется допусками на изготовление линзы и зазорами в посадочных диаметрах.

Этот способ обеспечивает центрирование центров кривизны поверхностей линз относительно оси корпуса объектива с точностью до 20 мкм, что не обеспечивает реализацию расчетного качества оптических схем объективов для современных матричных болометрических приемников.

Наиболее близким техническим решением к предлагаемому изобретению является способ, при котором каждую линзу, входящую в оптическую схему объектива, устанавливают в свою оправу, а оправу протачивают после центрирования линзы в «плавающем патроне» с контролем центрирования поверхностей по автоколлимации [2].

Описанный способ центрирования линзы в оправе основан на контроле центрирования двух поверхностей линзы, одна из которых контролируется сквозь материал линзы, прозрачный в видимой области спектра.

Этот способ обеспечивает центрирование с точностью до 5 мкм.

К недостаткам указанного способа относится невозможность его использования при центрировании линз, непрозрачных в видимой области спектра.

Основной задачей, на решение которой направлено изобретение, является повышение точности сборки объективов с линзами, непрозрачными в видимой области спектра, и расширение их функциональных возможностей.

Для решения поставленной задачи предложен способ сборки объективов, работающих в инфракрасной области спектра, который, как и прототип, включает установку каждой линзы, входящей в оптическую схему объектива, в свою оправу, центрирование линзы в «плавающем патроне» станка с контролем центрирования поверхностей по автоколлимации и протачивание оправы.

В отличие от прототипа для центрирования линзы используют имитатор линзы, изготовленный из материала, прозрачного в видимой области спектра, закрепление имитатора линзы в «плавающем» патроне станка осуществляют так, чтобы центр кривизны базовой поверхности имитатора линзы совпадал с центром качания чашки «плавающего» патрона станка, затем подвижками оправы в «плавающем» патроне станка при контроле автоколлимационным микроскопом выставляют автоколлимационные изображения центров кривизны двух оптических поверхностей линзы на ось вращения шпинделя станка, после чего извлекают имитатор линзы из оправы, а на его место устанавливают линзу, при этом происходит самоцентрирование невидимой поверхности линзы, затем разворотом чашки «плавающего» патрона станка при контроле автоколлимационным микроскопом выставляют автоколлимационное изображение центра кривизны видимой оптической поверхности линзы на ось вращения шпинделя станка, после чего обрабатывают торцевые и цилиндрические поверхности оправы.

Сущность изобретения заключается в том, что при центрировании в оправе линзы из материала непрозрачного в видимой области спектра используется имитатор линзы, изготовленный из материала, прозрачного в видимой области спектра.

Технический результат, достигнутый в предлагаемом изобретении, обеспечивается за счет расширения функциональных возможностей и повышения точности сборки объективов, работающих в инфракрасной области спектра, для приборов наблюдения, в области спектра (8-14) мкм, что увеличивает дальность их действия.

Предлагаемый способ сборки объективов, работающих в инфракрасной области спектра, осуществляют следующим образом.

Для центрирования линзы используют имитатор линзы, изготовленный из материала, прозрачного в видимой области спектра.

Для этого в заготовку оправы вместо линзы устанавливают имитатор линзы.

Затем устанавливают заготовку оправы с закрепленным в ней имитатором линзы в «плавающий» патрон станка таким образом, чтобы центр кривизны базовой поверхности имитатора линзы совпадал с центром качания чашки «плавающего» патрона.

Подвижками оправы в «плавающем» патроне при контроле автоколлимационным микроскопом выставляют автоколлимационные изображения центров кривизны двух оптических поверхностей линзы на ось вращения шпинделя станка.

После чего вынимают имитатор линзы из оправы и на его место устанавливают линзу. При этом невидимая поверхность линзы самоцентрируется, так как устанавливается на то же посадочное место, на которое устанавливался имитатор линзы.

Разворотом чашки «плавающего» патрона при контроле автоколлимационным микроскопом выставляют автоколлимационное изображение центра кривизны видимой оптической поверхности линзы на ось вращения шпинделя станка.

Обрабатывают поверхности (торцевые и цилиндрические) оправы.

Данную операцию производят со всеми линзами, входящими в конструкцию объектива.

Таким образом, предлагаемое изобретение может быть использовано при сборке объективов для тепловизионных приборов, приемники которых чувствительны в дальней инфракрасной (ИК) области спектра.

Источники информации

1. Кругер М.Я. и др. Справочник конструктора оптико-механических приборов. Л.: Машиностроение, 1968, 31 с.310-316.

2. Ефремов А.А. и др. Сборка оптических приборов. М.: Высшая школа, 1978, с.146-150 - прототип.

Способ сборки объективов, работающих в инфракрасной области спектра, включающий установку каждой линзы, входящей в оптическую схему объектива, в свою оправу, центрирование линзы в «плавающем» патроне станка с контролем центрирования поверхностей по автоколлимации и протачивание оправы, отличающийся тем, что для центрирования линзы используют имитатор линзы, изготовленный из материала, прозрачного в видимой области спектра, закрепление имитатора линзы в «плавающем» патроне станка осуществляют так, чтобы центр кривизны базовой поверхности имитатора линзы совпадал с центром качания чашки «плавающего» патрона станка, затем подвижками оправы в «плавающем» патроне станка при контроле автоколлимационным микроскопом выставляют автоколлимационные изображения центров кривизны двух оптических поверхностей линзы на ось вращения шпинделя станка, после чего извлекают имитатор линзы из оправы, а на его место устанавливают линзу, при этом происходит самоцентрирование невидимой поверхности линзы, затем разворотом чашки «плавающего» патрона станка при контроле автоколлимационным микроскопом выставляют автоколлимационное изображение центра кривизны видимой оптической поверхности линзы на ось вращения шпинделя станка, после чего обрабатывают торцевые и цилиндрические поверхности оправы.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению и может быть использовано в устройствах приема и фокусировки оптического излучения в условиях больших изменений температуры окружающей среды.

Изобретение относится к области техники портативных дисплеев и направлено на повышение удобства при их использовании. .

Изобретение относится к оптическому приборостроению, в частности к способам крепления оптических компонентов в оправах и конструкциям оправ. .

Объектив // 1770937

Объектив // 2406101

Изобретение относится к модулю камеры, встроенному в портативное электронное устройство. Устройство содержит блок затвора, установленный на передней поверхности передней оправы объектива. Блок затвора имеет лепесток затвора, который открывает и закрывает оптический путь системы съемки изображения с помощью привода лепестка затвора. В кожухе, в котором размещен лепесток затвора с приводом, выполнено отверстие для оптического пути. Блок затвора установлен на передней поверхности передней оправы объектива, путем зацепления друг с другом секции фиксации крышки и секции фиксации кожуха. Технический результат - уменьшение количества деталей и упрощение их формы. 6 з.п. ф-лы, 50 ил.

Способ включает предварительное измерение технологические погрешностей линзовых узлов и расчет по ним величины изменения одного из воздушных промежутков и углы поворота каждого линзового узла вокруг оси наружного цилиндра линзового узла. Осуществляют осевой сдвиг и поворот всех линзовых узлов. Совмещают оптическую и механическую оси объектива путем радиального сдвига всех линзовых узлов. Объектив содержит размещенные в цилиндрическом отверстии корпуса с опорной торцевой плоскостью и наружным базовым резьбовым цилиндром линзовые узлы в общей цилиндрической оправе, установленной с возможностью осевого перемещения относительно опорной торцевой плоскости, и прокладное коррекционное кольцо и пружину для упругого осевого замыкания общей цилиндрической оправы. Объектив снабжен цилиндрической втулкой с прорезью, направленной вдоль оси цилиндрического отверстия корпуса, втулка жестко соединена с общей цилиндрической оправой линзовых узлов в радиальном направлении и упругим замыканием в осевом направлении пружиной. Втулка может перемещаться вдоль оси цилиндрического отверстия корпуса и разворачиваться вокруг этой оси. Цилиндрическое отверстие корпуса выполнено с эксцентриситетом Δк относительно наружного базового резьбового цилиндра объектива, а внутреннее отверстие общей цилиндрической оправы линзовых узлов выполнено с эксцентриситетом Δo относительно внешнего цилиндра общей цилиндрической оправы. Технический результат - повышение качества юстировки с одновременным обеспечением ее автоматизации. 2 н.п. ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению и может быть использовано для ведения стрельбы из стрелкового оружия. Оптический прицел переменного увеличения содержит установленные в корпусе объектив, окуляр, систему смены увеличения, помещенную в подвижную оправу и кинематически связанную с механизмом смены увеличения, органы управления. Дополнительно введены: оборачивающая система, тубус с продольным пазом, в котором размещены оборачивающая система и система смены увеличения в оправе, механизм смены увеличения выполнен из толкателя, рычага и рукоятки. Технический результат - упрощение конструкции механизма смены увеличения, обеспечение управления механизмом смены увеличения одним органом, повышение эксплуатационных свойств прицела. 2 з.п. ф-лы, 2 ил.

Способ включает установку линзы на плоский буртик промежуточной части оправы, размещаемой на буртике цилиндрического отверстия основной оправы с возможностью наклона. Вращают основную оправу вокруг ее базовой оси, измеряют биение центра кривизны первой рабочей поверхности линзы относительно оси вращения, наклоняют промежуточную часть для совмещения центра кривизны первой рабочей поверхности линзы с осью вращения и фиксируют положение промежуточной части. Измеряют биение центра кривизны второй рабочей поверхности линзы относительно оси вращения, сдвигают линзу по плоской поверхности опорного буртика для совмещения центра кривизны второй рабочей поверхности линзы с осью вращения и фиксируют положение линзы в промежуточной части оправы. Оправа имеет наружную базовую цилиндрическую поверхность и плоский наружный базовый фланец, образующие базовую ось оправы, внутреннее цилиндрическое отверстие с опорным буртиком, в которое вставлена с увеличенным зазором посадки промежуточная цилиндрическая часть с плоским опорным буртиком для установки линзы. Промежуточная цилиндрическая часть сопряжена с опорным буртиком внутреннего цилиндрического отверстия по сферической поверхности. Технический результат - повышение точности центрировки за счет центрировки по обеим поверхностям линзы. 2 н. и 1 з.п. ф-лы, 2 ил.

Способ включает установку линзы сферической рабочей поверхностью на опорный буртик цилиндрического отверстия промежуточной цилиндрической части, размещаемой на опорном буртике цилиндрического отверстия основной оправы. Измеряют биение центра кривизны первой рабочей поверхности относительно оси вращения. Разворачивают промежуточную часть оправы для совмещения центра кривизны первой рабочей поверхности с осью вращения и фиксируют ее положение. Наклоняют линзу для совмещения центра кривизны второй рабочей поверхности с осью вращения или установки её перпендикулярно к оси вращения и фиксируют положение линзы в промежуточной части оправы. Оправа имеет наружную базовую цилиндрическую поверхность и плоский наружный базовый фланец, образующие базовую ось оправы, внутреннее цилиндрическое отверстие с опорным буртиком, в которое вставлена промежуточная цилиндрическая часть с опорным буртиком для установки линзы. Внутреннее цилиндрическое отверстие промежуточной цилиндрической части выполнено с эксцентриситетом относительно своего наружного цилиндра, а внутреннее цилиндрическое отверстие основной оправы выполнено с таким же эксцентриситетом относительно базовой оси основной оправы. Технический результат - повышение точности центрировки линзы в оправе за счет центрировки по обеим поверхностям линзы. 2 н.п. ф-лы, 1 ил.

Изобретение относится к осветительной системе, содержащей: плату СИД, несущую СИДы; и оптическую плату на плате СИД; причем оптическая плата выполнена из оптических модулей, расположенных рядом друг с другом согласно заранее определенным ориентациям по отношению друг к другу, причем каждый оптический модуль содержит, по меньшей мере, один оптический элемент, выполненный с возможностью быть обращенным к, по меньшей мере, одному из упомянутых СИДов и изменять параметр света, излучаемого этим, по меньшей мере, одним СИД, причем осветительная система снабжена механическими элементами защиты от неправильного обращения, выполненными с возможностью препятствовать размещению оптических модулей согласно ориентациям по отношению друг к другу, отличным от упомянутых заранее определенных ориентаций. 2 н. и 12 з.п. ф-лы, 20 ил.
Наверх