Способ получения электропроводящего полимерного композиционного материала

Изобретение относится к области полимерного материаловедения, а именно к электропроводящим материалам с положительным температурным коэффициентом сопротивления, и может быть использовано для изготовления электронагревательных элементов, применяющихся для подогрева трубопроводов, предназначенных для транспортировки высоковязких продуктов, например нефти и нефтепродуктов. В способе по изобретению осуществляют смешение компонентов, прессование с последующим измельчением полученной заготовки до порошкообразного состояния. Композиция материала состоит из, мас.%: 50-55 резиновой смеси В-14, 15-20 сверхвысокомолекулярного полиэтилена, 30-35 кокса. Кокс сначала смешивают со сверхвысокомолекулярным полиэтиленом. Затем прессуют смесь при 15 МПа, измельчают и вводят в сырую резиновую смесь В-14. Экструзию композита проводят при 140-145°С, в головке - 150°С, время - 20-25 мин. Технический результат состоит в упрощении способа и в получении материала с применением доступных и дешевых ингредиентов. 1 ил., 1 табл.

 

Изобретение относится к области полимерного материаловедения, а именно к электропроводящим материалам с положительным температурным коэффициентом сопротивления, содержащим полимеры - диэлектрики и мелкодисперсный неорганический наполнитель, и может быть использовано для изготовления электронагревательных элементов с положительным температурным коэффициентом сопротивления, применяющихся для подогрева трубопроводов, предназначенных для транспортировки высоковязких продуктов, например нефти и нефтепродуктов.

Известен способ получения электропроводящего полимерного композиционного материала на основе политетрафторэтилена, содержащий в качестве наполнителей: кокс, графит, ферроцен и сополимер тетрафторэтилена с гексафторпропиленом. Материал получают смешением компонентов, сушкой в вакуумном шкафу, холодным прессованием и спеканием (SU 1361729 А1, 23.12.1987) [1].

Недостатком известного способа получения материала является сложность технологии и высокая энергоемкость, а именно совмещение наполнителей, прессование с последующим спеканием при температурах 370+5°С, а также такой способ обеспечивает низкую электрическую проводимость материала.

Наиболее близким к предлагаемому изобретению является способ получения электропроводящего полимерного композиционного материала на основе полиамидного связующего ПАИС-104, содержащий в качестве проводящего наполнителя нестехиометрический карбид титана и углеродный наполнитель в виде порошка графита, сажи или каменноугольного кокса (RU 2280657 С1, 27.07.2006) [2].

Недостатком известного способа материала является сложность технологии, а именно трудоемкость совмещения компонентов и использование дорогостоящих ингредиентов, что значительно повышает себестоимость изготавливаемого материала.

Целью настоящего изобретения является получение электропроводящего полимерного композиционного материала с применением доступных и дешевых дополнительных ингредиентов и упрощение технологического цикла изготовления материала.

Для достижения поставленной цели предлагается технологический подход, основанный на трехстадийной технологии, предусматривающий на первом этапе смешение компонентов, холодное прессование, на втором - измельчение полученной заготовки до порошкообразного состояния, затем введение в сырую резиновую смесь, на третьем - экструзию композиции. При этом рецептура композита содержит не менее трех составляющих: резиновая смесь марки В-14, сверхвысокомолекулярный полиэтилен и кокс.

Предварительно просушенный порошок сверхвысокомолекулярного полиэтилена при 100-120°С в течение 2 ч, просеянного через сито, в количестве 15-20 мас.% смешивают в лопастном смесителе с порошком кокса - 30-35 мас.%, затем прессуют смесь при удельном давлении 15 МПа, полученный монолит измельчают до порошкообразного состояния, затем на вальцах вводят в сырую резиновую смесь марки В-14 - 50-55 мас.%, после чего полученный композит экструдируют при следующем режиме: температура в зонах составляет 140-145°С, в головке 150°С, продолжительность - 20-25 мин.

Материал готовят из следующих компонентов.

Резиновая смесь марки В-14 имеет рабочие температуры - 55÷120°С, разрушающее напряжение при растяжении 10-15 МПа, относительное удлинение при разрыве 160%. Состав В-14 приведен в таблице.

Порошок сверхвысокомолекулярного полиэтилена представляет собой вещество белого цвета. Разрушающее напряжение при растяжении 22-26 МПа, относительное удлинение при разрыве 300-500%, удельное объемное сопротивление 1011-1017 Ом·м.

Кокс линейный мелкодисперсный марки КЛ-1 имеет размер частиц 10-40 мкм, коэффициент теплопроводности 0,42·10-3 Вт/м.

Введение в сырую резину марки В-14 кокса, смешанного с сверхвысокомолекулярным полиэтиленом, позволяет получить электропроводящий полимерный материал с высоким положительным температурным коэффициентом сопротивления и удельной электропроводностью, а сочетание двух полимеров разной химической природы позволяет улучшить технологические качества материала, а также улучшить физико-механические показатели, например прочность предлагаемого электропроводящего материала, обеспечивающего повышенный контакт с рабочей поверхностью и равномерное распределение тепла при обогреве криволинейных поверхностей.

Как видно из приведенного графика, введение именно смеси наполнителей кокса и сверхвысокомолекулярного полиэтилена (кривые 1 и 2) приводит к значительному во всем исследуемом диапазоне температур увеличению проводимости предлагаемой электропроводящей полимерной композиции как минимум на один десятичный порядок по сравнению с проводимостью известной композиции (кривая 3). При сравнении кривых 1 и 2 видно, что уменьшение содержания кокса с 40 (кривая 1) до 30 (кривая 2), но увеличение содержания сверхвысокомолекулярного полиэтилена с 15 до 20 и В-14 с 45 до 50 мас.% приводит к увеличению проводимости.

Пример 1. 15 г сверхвысокомолекулярного полиэтилена, предварительно высушенного при 100-120°С в течение 2 ч, просеянного через сито, смешивают в лопастном смесителе с 40 г кокса. Затем смесь порошков помещают в пресс-форму и прессуют при удельном давлении 15 МПа. Полученный монолит измельчают в вибромельнице и вводят в сырую резину марки В-14 на вальцах. Экструзию проводят при температурах: I зона - 140, II зона - 140, III зона - 145, головка 150°С, в течение 25 мин.

Исследование электрических свойств предлагаемых материалов проводят на образцах - лентах. Для определения удельного сопротивления предлагаемого электропроводящего композиционного материала к краям прижимаются металлические электроды с проводниками. Подготовленный таким образом образец подключат к цифровому омметру и помещают в термокамере, с помощью которой и производится нагрев образцов - лент. Температура образца регистрируется с помощью термопары, помещенной в образец. Результаты измерений представляют собой зависимости ρ от Т, приведенные на чертеже.

Предел прочности при растяжении определяется на лентах при комнатной температуре на испытательной машине.

Пример 2. 20 г сверхвысокомолекулярного полиэтилена, предварительно высушенного при 100-120°С в течение 2 ч, просеянного через сито, смешивают в лопастном смесителе с 30 г кокса. Затем смесь порошков помещают в пресс-форму и прессуют при удельном давлении 15 МПа. Полученный монолит измельчают в вибромельнице и вводят в сырую резину марки В-14 на вальцах. Полученную композицию экструдируют в изделие и определяют характеристики по примеру 1.

Испытания электропроводящего полимерного материала предлагаемого состава в составе греющего кабеля для обогрева водопровода из полиэтиленовой трубы ⌀ 63 мм и пенополиуретановой теплоизоляции толщиной 30 мм показали увеличение его работоспособности, обусловленное отсутствием терморегулирующих устройств, а также гибкостью, позволяющей обеспечить равномерное распределение тепла по рабочей поверхности нагреваемого элемента.

Увеличение или уменьшение процентного содержания наполнителей значительно снижает служебные характеристики предлагаемого материала. Уменьшение содержания электропроводящего наполнителя приводит к значительному падению проводимости материала, а повышение - к снижению прочностных характеристик материала.

Высокий положительный температурный коэффициент сопротивления β (0,039

град-1) при 80-100°С, а также низкое удельное сопротивление ρ (ρ=1 Ом·м при 100°С) позволяет получить на основе предлагаемого состава электропроводящий полимерный материал для нагревательных элементов с рабочей температурой до 100°С.

Таблица
Состав резиновой смеси марки В-14
Ингредиенты м.ч. на 100 м.ч. каучука
СКН-18. пластикат 100,0
Сера 2,5
N,N'-дифенилгуанидин 0,25
Альтакс 2,7
Белила цинковые (ZnO) 7,5
Альдоль-α-нафтиламин 4,0
Диафен ФП 1,0
Параоксинеозон 1,0
Техуглерод П803 130,0
Стеариновая кислота 1,0
Дибутилфталат 20,0
Всего 269,95

Способ получения электропроводящего композиционного материала, включающий смешение компонентов в лопастном смесителе, прессование с последующим измельчением, отличающийся тем, что используют композицию, состоящую из следующих компонентов, мас.%: резиновая смесь марки В-14 50-55, сверхвысокомолекулярный полиэтилен 15-20, кокс 30-35, при этом кокс смешивают со сверхвысокомолекулярным полиэтиленом, затем прессуют смесь при удельном давлении 15 МПа, полученный монолит измельчают до порошкообразного состояния, затем на вальцах вводят в сырую резиновую смесь марки В-14, после чего полученный композит экструдируют при следующем режиме: температура в зонах составляет 140-145°С, в головке - 150°С, продолжительность 20-25 мин.



 

Похожие патенты:

Изобретение относится к полимерным композициям, предназначенным для получения биодеградируемых изделий, таких как пленки и термоформованные изделия в виде потребительской тары.

Изобретение относится к предназначенным для изготовления пленок полиэтиленовым смешанным композициям, которые включают два или более различных полимеров этилена, каждый из которых имеет различную степень сложности разветвления длинной цепи.
Изобретение относится к полимерным композициям, применяемым в качестве конструкционного материала в различных отраслях, преимущественно для изготовления предохранительных деталей резьбовых частей труб.
Изобретение относится к области химии полимеров, а именно к способам изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов.
Изобретение относится к конструкционным композиционным материалам на основе сверхвысокомолекулярного полиэтилена (СВМПЭ), используемым для промышленного производства огнестойких изделий широкого назначения методом прессования.

Изобретение относится к содержащим полиэтилен композициям и, прежде всего, к смесям линейного полиэтилена низкой плотности и бимодальным полиэтиленам, предназначенным для получения пленок.

Изобретение относится к полиэтиленовым пленкам и прежде всего к бимодальным полиэтиленовым композициям, предназначенным для получения пленок с низким содержанием примесей и повышенной технологичностью.
Изобретение относится к полимерным композициям конструкционного назначения на основе сверхвысокомолекулярного полиэтилена и волокнистых наполнителей и может быть использовано для изготовления подшипников скольжения, уплотнений, зубчатых колес и ряда других деталей конструкционного назначения машин и механизмов.
Изобретение относится к области термопластичных эластомерных полимерных композиций, предназначенных для изготовления гибких деталей, используемых в авиационной, автомобильной, кабельной и других отраслях промышленности.
Изобретение относится к области химии сераорганических соединений и касается методов получения (синтеза) органических соединений ароматического ряда, содержащих дисульфидные группы, (например полирезорциндисульфид, полигидрохинондисульфид, поликатехиндисульфид, полидисульфид галловой кислоты) и их применения.

Изобретение относится к порошкообразной белой композиции промотора вулканизации и композициям каучука, содержащим эту композицию. .
Изобретение относится к безасбестовым фрикционным полимерным композициям и используется в производстве тормозных колодок. .
Изобретение относится к способу поверхностной активации и/или девулканизации частиц резинового материала, вулканизированного серой. .
Изобретение относится к способу модификации резиновых смесей и резин общего и специального назначения на основе высокомолекулярных карбоцепных полимеров. .

Изобретение относится к протектору шины, включающему сшитую композицию каучука, характеризующуюся твердостью А по Шору, большей 45 и меньшей 57, при измерении в соответствии со стандартом Standard ASTM D 2240.
Изобретение относится к резиновой промышленности, а именно к области переработки эластомерных отходов, содержащих структурированные включения образующихся в производстве синтетических каучуков, и изготовления на их основе однородных резиновых смесей.

Изобретение относится к резиновой композиции и пневмошине, протектор которой выполнен из этой резиновой композиции. .

Изобретение относится к резиновой промышленности, в частности к разработке термопластичных эластомерных материалов на основе каучука, и может быть использовано для изготовления различных экструзионных профилей и формованных гибких деталей, используемых в автомобильной, кабельной, легкой промышленности и строительстве.
Изобретение относится к шинной и резино-технической промышленности. .

Изобретение относится к пригодной для применения в производстве пневмошин или полупродуктов для пневмошин эластомерной композиции на основе по меньшей мере одного диенового эластомера, неорганического наполнителя в качестве усиливающего наполнителя, полифункционального органосилана, а именно гидроксисилана общей формулы (I), в качестве связывающего агента (для системы неорганический наполнитель/диеновый эластомер), имеющего по меньшей мере две функционалные группы, обозначаемые "X" и "Y", который может быть привит, с одной стороны, к эластомеру с помощью функции Х и, с другой стороны, к неорганическому наполнителю с помощью функции Y, которая является гидроксисилильной функцией ( Si-OH), причем органосиланом является полисульфид гидроксисилана общей формулы (I), количество неорганического усиливающего наполнителя составляет от 10 до 200 чсэ (вес.

Изобретение относится к полиэфирной композиции для получения заготовок для бутылок и бутылок для напитков, получению полиэфирной композиции и заготовки из нее. .
Наверх