Шлакообразующая смесь

Изобретение относится к области черной металлургии, в частности к непрерывной разливке стали. Шлакообразующая смесь содержит (мас.%): полевой шпат (амазонит) (23-29), портландцемент (43-45), кокс молотый (8-11), рисовая лузга (13-16), алюминиевый порошок (1-2) и плавиковый шпат (4-5). Обеспечивается снижение выделения в атмосферу фтора из смеси в процессе разливки и повышение стойкости огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к черной металлургии, конкретнее к разливке стали на машине непрерывной разливки.

К шлакообразующим смесям предъявляются определенные требования: они должны иметь заданную вязкость и температуру плавления. Для регулирования вязкости и плавкости шлакообразующих смесей в их состав вводят такие известные материалы, как плавиковый шпат (флюорит) и концентраты на его основе, содержащие фтор (см. «Свойства шлакообразующих смесей для непрерывной разливки стали с повышенной скоростью». - Ж. «Электрометаллургия», 2007, №3, с.13-16).

Содержание фтора в приведенных смесях составляет от 2,0 до 8,11%. Это является недостатком приведенных шлакообразующих смесей, так как содержащийся в них фтор при разливке стали выделяется в атмосферу - загрязняет окружающую среду, а также снижает стойкость огнеупорной футеровки ковшей.

Известна также шлакообразующая смесь для защиты металла в промежуточном ковше (см. патент РФ №2174893, 7 МПК B22D 11/111, опубл. в БИ №29, 20.10.2001). Смесь включает углеродсодержащий материал, фторсодержащий материал, материал на основе оксидов кремния и цемент.

Указанная смесь имеет те же недостатки, что и приведенные выше смеси: при разливке стали выделяется фтор, который загрязняет окружающую среду и снижает стойкость огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Известно также использование хлористого кальция при производстве цемента (см. диплом на открытие №210, опубл. в БИ №22, 1979).

При использовании хлористого кальция в количестве до 30% от массы цементного клинкера интенсифицируется процесс обжига. При этом хлор в атмосферу не выделяется, а входит в кристаллическую решетку.

Фтор и хлор являются галогенами и близки по своим свойствам.

Оказалось, что фтор, как и хлор, может входить в кристаллическую решетку расплава и не выделяться из расплава при основности расплава (CaO/SiO2), равной 1,0-1,2.

Как указывалось выше (см. диплом на открытие №210 опубл. в БИ №22, 1979), связывание хлора расплавом клинкера происходит за счет высокого содержания в нем CaO.

Известно, что портландцементный клинкер имеет следующий химический состав (см. Бутт Ю.М. Технология цемента и других вяжущих. М.: Стройиздат, 1956, с.117), мас.%: CaO 63…67; SiO2 21…24; Al2O3 4…7; Fe2O3 2…4; MgO, SO3 и др. 1,5…3,0.

Основность клинкера (CaO/SiO2) составляет от 2,6 до 3,2.

Именно благодаря высокой основности клинкера происходит связывание хлора расплавом клинкера.

Исходя из этого, для связывания силикатным расплавом галогена фтора также, как и хлора, необходима высокая основность расплава.

На свойстве фтора связываться кристаллической решеткой расплава была разработана экзотермическая шлакообразующая смесь, являющаяся ближайшим аналогом к заявляемому изобретению (см. авт. свид. СССР №1291607, МПК C21C 5/54, C21D 7/70, опубл. 23.02.87, БИ №7).

Смесь содержит алюминиевый порошок, железорудный концентрат, плавиковый шпат (CaF2) и силикатную составляющую - доменный гранулированный шлак.

Гранулированный доменный шлак имеет основность (CaO/SiО2) от 1,0 до 1,2.

Связывание фтора кристаллической решеткой расплава происходит в количестве 16% от вводимого в состав смеси, часть фтора выделяется в атмосферу, при этом снижается стойкость огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Технической задачей изобретения является снижение выделения фтора в атмосферу, а также повышение стойкости огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Поставленная техническая задача решается тем, что шлакообразующая смесь, включающая силикатную составляющую, плавиковый шпат и алюминиевый порошок, в отличие от ближайшего аналога в качестве силикатной составляющей содержит полевой шпат (амазонит) и портландцемент, кроме того, она дополнительно содержит углеродистую составляющую из кокса молотого и рисовой лузги при следующем соотношении компонентов, мас.%:

Полевой шпат (амазонит) 23-29
Портландцемент 43-45
Кокс молотый 8-11
Рисовая лузга 13-16
Алюминиевый порошок 1-2
Плавиковый шпат 4-5

При этом отношение содержания рисовой лузги и кокса молотого составляет 1,2-2,0, а отношение содержания плавикового шпата в смеси и портландцемента составляет 0,09-0,12.

В состав шлакообразующей смеси входят: полевой шпат (амазонит), портландцемент, кокс молотый, рисовая лузга, алюминиевый порошок и плавиковый шпат.

Их назначение в смеси заключается в следующем.

Полевой шпат (амазонит) является сырьем для производства различных видов стекла, а в последнее время используется и в черной металлургии в составе смесей для заполнения выпускного канала сталеразливочных ковшей, а также в составе теплоизолирующих смесей для утепления зеркала металла в сталеразливочных ковшах.

В состав полевого шпата (амазонита) входят: SiO2, Al2O3, K2O, Na2O и Fe2O3. Оксиды K2O и Na2O способствуют интенсивному расплавлению шлакообразующей смеси.

При содержании в смеси полевого шпата (амазонита) менее 23% не обеспечивается интенсивное расплавление компонентов шлакообразующей смеси, особенно портландцемента, что препятствует наиболее полному усвоению фтора, часть фтора выделяется в атмосферу и ведет к снижению стойкости футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

При содержании же в смеси полевого шпата (амазонита) более 29% идет интенсивное расплавление компонентов шлакообразующей смеси, в том числе и портландцемента, и расплав не успевает образовать однородную смесь с плавиковым шпатом, что препятствует наиболее полному усвоению фтора, часть фтора выделяется в атмосферу, при этом происходит снижение стойкости футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Таким образом, оптимальным содержанием полевого шпата (амазонита) в шлакообразующей смеси являются 23-29%.

Содержание портландцемента в смеси менее 43% ведет к интенсивному расплавлению смеси при температуре разливки металла и поэтому не обеспечивает связывания фтора расплавом.

При содержании портландцемента в смеси более 45%, не наблюдается интенсивное расплавление смеси, что также не обеспечивает связывание фтора расплавом.

Исходя из вышеизложенного, оптимальным содержанием портландцемента в шлакообразующей смеси является 43-45%.

Кокс молотый вводят в состав смеси для поддержания высокой температуры смеси в начальный период контакта смеси с расплавленным металлом за счет его горения, а также для замедления разгара огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом, содержащимися в металлическом расплаве оксидами, повышения стойкости футеровки.

При содержании в смеси кокса молотого менее 8% не обеспечивается высокая температура расплава в начальный период, а при его содержании более 11% хотя и обеспечивается высокая температура расплава, но разгар огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом интенсифицируется, что приводит к снижению ее стойкости.

Таким образом, оптимальным содержанием кокса молотого в шлакообразующей смеси является 8-11%.

Рисовая лузга (иногда ее называют рисовой шелухой) является отходом при переработке риса, используется в энергетике в качестве горючего, а в металлургии вместе с коксом молотым в качестве теплоизолирующей смеси.

Рисовая лузга, также как и кокс молотый, является углеродистой составляющей.

Характерной особенностью рисовой лузги является химический состав ее золы, которая содержит, мас.%: SiO2 90,7…92,4; (CaO+MgO) 3,3…4,2; Al2O3 3,3…3,6; (FeO+Fe2O3) 1,0…1,5.

Ее назначение как углеродистой составляющей двоякое: во-первых, для поддержания высокой температуры смеси в начальный период контакта смеси с расплавленным металлом, аналогично коксу молотому и, во-вторых, наведению кислых шлаков (за счет высокого содержания SiO2 в ее золе), которые обеспечивают устойчивую вязкость расплава при изменении температуры расплава во время разливки.

При содержании рисовой лузги в смеси менее 13% не обеспечивается наведение кислых шлаков в начальный период контакта с расплавленным металлом, что приводит к повышению вязкости расплава, неполному растворению в расплаве всех компонентов смеси и это не приводит к снижению выделения фтора в атмосферу.

При содержании рисовой лузги в смеси более 16% вязкость расплава снижается и получается однородный (гомогенный) состав шлака, однако при этом интенсифицируется разгар огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Таким образом, оптимальным содержанием рисовой лузги в смеси является 13-16%.

Причем для поддержания температуры расплава смеси и наведения устойчивых кислых шлаков, как показывают опыты, необходимо, чтобы отношение содержания в смеси рисовой лузги и кокса молотого было в пределах 1,2-2,0.

При отношении рисовой лузги и кокса молотого менее 1,2 не обеспечивается наведение устойчивых кислых шлаков в расплаве смеси, что приводит к повышению перепада температуры расплавленного металла при разливке и, как следствие этого, к снижению стойкости огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

При отношении рисовой лузги и кокса молотого более 2,0 обеспечивается наведение устойчивых кислых шлаков, однако при этом снижается стойкость огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

С учетом вышеизложенного оптимальным отношением в смеси рисовой лузги и кокса молотого является 1,2-2,0.

Алюминиевый порошок является горючим экзотермических смесей, используемых в черной металлургии, причем экзотермическая реакция происходит в присутствии окислителя (обычно таковыми являются оксиды железа).

В шлакообразующих смесях алюминиевый порошок можно использовать в небольших количествах (1-2%) из-за возможности снижения стойкости огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

В состав заявляемой шлакообразующей смеси алюминиевый порошок входит в количестве 1-2%.

В качестве окислителя экзотермической реакции служат оксиды железа, содержащиеся в полевом шпате (амазоните), золе кокса молотого, образующейся после его сгорания, и оксиды железа, содержащиеся в неметаллических включениях разливаемой стали.

При содержании алюминиевого порошка в смеси в количестве 1-2% обеспечивается очистка расплавленного металла от оксидов железа неметаллических включений, не причиняя разгара огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

При содержании алюминиевого порошка в смеси в количестве менее 1% не происходит очистка металла от оксидов железа в составе неметаллических включений.

При содержании алюминиевого порошка в смеси более 2% происходит очистка металла от оксидов железа неметаллических включений, но не исключается разгар огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом, что снижает ее стойкость.

Таким образом, оптимальным содержанием алюминиевого порошка в заявляемой шлакообразующей смеси является 1-2%.

Содержание плавикового шпата в заявляемой шлакообразующей смеси составляет 4-5%.

Плавиковый шпат (флюорит) является главным плавнем силикатных расплавов. Он способствует образованию жидкотекучих расплавов, особенно в смеси с материалами с повышенным содержанием CaO (с повышенной основностью CaO/SiO2), такими как портландцемент и доменный шлак.

Плавиковый шпат образует расплав смесей при пониженных температурах по сравнению с температурой плавления самих смесей.

При содержании в шлакообразующей смеси плавикового шпата 4% образуется гомогенный (однородный) расплав, в котором фтор может связываться (входить в кристаллическую решетку расплава) не разъедая огнеупорную футеровку ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Аналогичное явление наблюдается и при содержании плавикового шпата в количестве 5%.

При содержании в шлакообразующей смеси плавикового шпата менее 4% не образуется гомогенный расплав, в котором фтор способен связываться.

При содержании в шлакообразующей смеси плавикового шпата в количестве более 5% образуется гомогенный расплав смеси, но при этом не исключается разгар огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом во время разливки.

На основании вышеизложенного оптимальным содержанием плавикового шпата в шлакообразующей смеси является 4-5%.

При этом необходимо учесть, что отношение содержания плавикового шпата и портландцемента необходимо поддерживать в пределах 0,09-0,12.

При отношении содержания плавикового шпата и портландцемента 0,09-0,12 возможен гомогенный расплав смеси и связывание расплавом фтора.

При отношении содержания плавикового шпата и портландцемента менее 0,09 не образуется гомогенный расплав смеси, что не обеспечивает связывание фтора расплавом.

При отношении содержания плавикового шпата и портландцемента более 0,12 образуется жидкотекучий расплав, кроме этого возможен разгар огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом.

Таким образом, оптимальным отношением содержания плавикового шпата и портландцемента является 0,09-0,12.

Пример конкретного исполнения

В сталеплавильном цехе ОАО "Магнитогорский металлургический комбинат" провели опыты по использованию шлакообразующих смесей в промежуточных ковшах номинальной емкостью 26 тонн при выплавке стали марки Ст3сп. Провели 22 плавки - плавки №451512÷451534.

В опытах использовали шлакообразующую смесь в соответствии с прототипом и заявляемую смесь.

В составе заявленной смеси использовали следующие материалы:

- полевой шпат (амазонит) Вишневогорского месторождения по ТУ 5726-96;

- портландцемент по ГОСТ 10178-85;

- кокс сухой молотый по СТП 101-68-98;

- рисовая лузга ПАМ-73.

- алюминиевый порошок вторичный пассированный марки АПВ-П по ТУ 1790-99;

- плавиковый шпат по ГОСТ 29219-91.

В опытах использовали следующие составы смесей:

№ состава Содержание компонентов, мас.%
Полевой шпат (амазонит) Портландцемент Кокс молотый Рисовая лузга Алюминиевый порошок Плавиковый шпат
1 23 45 10 16 2 4
2 29 44 9 13 1 4
3 25 44 11 14 1 5

Получены следующие результаты: выделение фтора в окружающую среду снизилось на 23,9% по сравнению с прототипом, при этом износ огнеупорной футеровки ковша в зоне контакта шлакообразующей смеси с расплавленным металлом при разливке в машинах непрерывного литья заготовок составил при использовании шлакообразующей смеси по прототипу 2,6-3,1 мм/плавку, заявляемой шлакообразующей смеси (составы 1, 2, 3) - 1,9-2,4 мм/плавку, что ниже на 24,6%.

1. Шлакообразующая смесь, включающая силикатную составляющую, плавиковый шпат и алюминиевый порошок, отличающаяся тем, что она дополнительно содержит углеродистую составляющую из кокса молотого и рисовой лузги, а в качестве силикатной составляющей она содержит полевой шпат в виде амазонита и портландцемент, при следующем соотношении компонентов, мас.%:

амазонит 23-29
портландцемент 43-45
кокс молотый 8-11
рисовая лузга 13-16
алюминиевый порошок 1-2
плавиковый шпат 4-5.

2. Шлакообразующая смесь по п.1, отличающаяся тем, что отношение содержания рисовой лузги и кокса составляет 1,2-2,0.

3. Шлакообразующая смесь по любому из пп.1 и 2, отличающаяся тем, что отношение содержания плавикового шпата и портландцемента составляет 0,09-0,12.



 

Похожие патенты:
Изобретение относится к черной металлургии и может быть использовано преимущественно для защиты поверхности металла в промежуточном ковше машины непрерывного литья слябовых заготовок.
Изобретение относится к черной металлургии, а именно к составам шлакообразующих смесей, используемых для теплоизоляции и защиты зеркала металла в промежуточном ковше от вторичного окисления при непрерывной разливке стали.
Изобретение относится к черной металлургии и может быть использовано преимущественно для защиты поверхности металла в промежуточном ковше машины непрерывного литья слябовых заготовок.
Изобретение относится к черной металлургии, в частности к непрерывной разливке стали. .
Изобретение относится к области металлургии. .
Изобретение относится к области металлургии. .
Изобретение относится к области металлургии. .
Изобретение относится к области металлургии, в частности к производству теплоизолирующих смесей, применяемых для утепления поверхности жидких расплавов: головной части слитков, в промковшах при разливке стали на системах непрерывного литья и ковшах, используемых для проведения технологических процессов при производстве стали (транспортировка, хранение чугуна и стали и др.).
Изобретение относится к области металлургии и может быть использовано для защиты зеркала металла от окисления и охлаждения при сифонной и непрерывной разливке конструкционных сталей.

Изобретение относится к области черной металлургии, в частности к непрерывной разливке стали
Изобретение относится к области литейного производства

Изобретение относится к черной металлургии

Изобретение относится к литейному производству
Изобретение относится к черной металлургии, в частности к утеплению поверхности жидкой стали и чугуна в ковше во время транспортировки и разливки
Изобретение относится к черной металлургии, а именно к составам теплоизолирующих смесей, используемых для теплоизоляции поверхности зеркала металла в сталеразливочных и промежуточных ковшах

Изобретение относится к черной металлургии и может быть использовано в кристаллизаторе машины непрерывного литья слябовых заготовок

Изобретение относится к области металлургии, в частности к защите поверхности металла в кристаллизаторе

Изобретение относится к металлургии
Изобретение относится к черной металлургии, а именно к составам шлакообразующих смесей, используемых для теплоизоляции и защиты зеркала металла в промежуточном ковше от вторичного окисления при непрерывной разливке стали
Наверх