Способ изготовления полупроводникового прибора

Использование: в технологии производства полупроводниковых приборов. Технический результат изобретения - повышение адгезии в полупроводниковых структурах, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных структур. Сущность изобретения: в способе изготовления полупроводникового прибора, включающем последовательное формирование активных областей полупроводникового прибора, диоксида кремния и нанесения алюминиевой пленки, сформированную полупроводниковую структуру обрабатывают фотонами с энергией 20-35 эВ с интенсивностью потока фотонов 1011-1012 см-2 c-1 с последующим термостабилизирующим отжимом при температуре 300-400°С в течение 30-50 с. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования тонких пленок с повышенной адгезией.

Известен способ повышения адгезии [Патент №5391393 США, МКИ B05D 5/10] путем формирования ковалентных связей за счет использования герметизирующего слоя между полиимидом и подложкой. Полиимид, нанесенный на поверхность кристалла, обрабатывают при повышенной температуре в растворе гидроксиламина, а в зазор затем вводят герметик, после чего проводят отверждение для образования прочной адгезионной связи. При этом образуются многослойные структуры, которые ухудшают параметры пленок.

Известен способ повышения адгезии [Патент №5391519 США, МКИ Н01L 21/44] путем нанесения барьерного слоя па пленку диоксида кремния и проведения быстрого отжига в среде азота и травления барьерного слоя по периметру формируемой контактной площадки.

Недостатками этого способа являются:

- образование дополнительных механических напряжений;

- сложность технологического процесса;

- повышенная плотность дефектов в структурах.

Задача, решаемая изобретением: повышение адгезии в полупроводниковых структурах, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных.

Задача решается путем обработки полупроводниковой структуры после нанесения алюминиевой пленки на ней фотонами с энергией 20-35 эВ с интенсивностью потока фотонов 1011-1012 см-2 с-1 с последующим термостабилизирующим отжигом при температуре 300-400°С в течение 30-50 с.

В процессе облучения фотонами повышение адгезии достигается в результате перестройки связи на поверхности раздела за счет протекания процессов ионизации.

Технология способа состоит в следующем.

В процессе производства полупроводниковых приборов после формирования активных областей полупроводникового прибора, пленки диоксида кремния и нанесения алюминиевой пленки полупроводниковую структуру обрабатывают фотонами с энергией 20-35 эВ с интенсивностью потока фотонов 1011-1012 см-2 с-1 с последующим термостабилизирующим отжигом при температуре 300-400°С в течение 30-50 с. В результате повышается адгезия алюминиевой пленки к пленке диоксида кремния.

По предлагаемому способу были изготовлены и исследованы структуры. Результаты обработки представлены в таблице 1.

Таблица 1.
Параметры п/п структур, изготовленных по стандартной технологии Параметры п/п структур, изготовленных по предлагаемой технологии
адгезия, МПа коэффициент усиления адгезия, МПа коэффициент усиления
1,2 50 9,8 91
0,8 40 7,9 78
1,1 48 9,6 84
1,4 57 9,9 103
0,9 42 8,6 80
1,6 68 10,5 115
0,7 36 7,8 69
1,0 45 9,1 82
0,6 31 7,2 66
1,3 54 9,7 97
0,8 39 7,8 76

Экспериментальные исследования показали, что выход годных полупроводниковых структур на партии пластин, сформированных в оптимальном режиме, увеличился на 17,5%.

Технический результат: повышение адгезии в полупроводниковых структурах, обеспечивающее технологичность, улучшение параметров, повышение надежности и увеличение процента выхода годных структур.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ повышения адгезии путем обработки структуры после формирования активных областей полупроводникового прибора, пленки диоксида кремния и нанесения алюминиевой пленки фотонами с энергией 20-35 эВ с интенсивностью потока фотонов 1011-1012 см-2 с-1 с последующим термостабилизирующим отжигом при температуре 300-400°С в течение 30-50 с, позволяет повысить процент выхода годных структур и улучшить их надежность.

Способ изготовления полупроводникового прибора, включающий последовательное формирование активных областей полупроводникового прибора, диоксида кремния и нанесения алюминиевой пленки, отличающийся тем, что сформированную полупроводниковую структуру обрабатывают фотонами с энергией 20-35 эВ с интенсивностью потока фотонов 1011-1012 см-2 с-1, с последующим термостабилизирующим отжимом при температуре 300-400°С в течение 30-50 с.



 

Похожие патенты:

Изобретение относится к технологии получения индиевых столбиков для микросборок интегральных схем или ИК-фотодиодных матриц методом перевернутого кристалла. .

Изобретение относится к области микроэлектронных и микромеханических устройств и может быть использовано в качестве датчиков расхода и изменения уровней жидкостей и газов.

Изобретение относится к области технической физики. .

Изобретение относится к области микроэлектроники, в частности к технологии изготовления тонкопленочных конденсаторов. .

Изобретение относится к микроэлектронике , в частности к технологии изготовления полупроводниковых структур с многоуровневой металлизацией. .

Изобретение относится к полупроводниковой технике, в частности к полупроводниковым преобразователям солнечной энергии в электрическую. .

Изобретение относится к технологии получения индиевых столбиков взрывной технологией для микросборок интегральных схем и фотодиодных матриц

Изобретение относится к технологии получения индиевых столбиков взрывной технологией

Изобретение относится к наноструктурам с высокими термоэлектрическими свойствами. Предложена одномерная (1D) или двумерная (2D) наноструктура, являющаяся нанопроволокой из кремния, полученной методом безэлектролизного травления или выращенной методом VLS (пар-жидкость-кристалл). Наноструктура имеет шероховатую поверхность и содержит легированный или нелегированный полупроводник. Предложены варианты способа вырабатывания электрического тока с использованием заявленных наноструктур, а также варианты устройств для термоэлектрического преобразования с их использованием. Технический результат - предложенная наноструктура может быть размещена между двумя электродами и эффективно использована для термоэлектрического генерирования мощности или для термоэлектрического охлаждения. 18 н. и 30 з.п. ф-лы, 9 ил., 2 пр.

Использование: для получения индиевых микроконтактов и соединения больших интегральных схем (БИС) и фотодиодных матриц. Сущность изобретения заключается в том, что на полупроводниковую пластину с металлическими площадками для формирования индиевых микроконтактов наносят слой позитивного обращаемого фоторезиста, который после экспонирования через фотошаблон с рисунком микроконтактов подвергается специальной термической обработке (обращение изображения) с последующим сплошным экспонированием и проявлением; на полученную фоторезистивную маску с отрицательным профилем напыляют слой индия; затем растворяют слой фоторезиста с одновременным отслаиванием слоя индия в зазорах между микроконтактами (процесс «взрыва»), оставляя последний на металлических площадках. Технический результат: упрощение технологии и сокращение времени изготовления индиевых микроконтактов методом обратной фотолитографии. 6 ил.

Предложены устройство и способ определения характеристик пучка частиц, при которых обеспечивают прием пучка частиц в центральной области кожуха с пониженным давлением; воздействуют принятым пучком на ударную пластину для пучка, которая термически изолирована от кожуха; измеряют изменение температуры ударной пластины для пучка за счет воздействия пучка измеряют изменение давления в кожухе за счет приема пучка; и обрабатывают измеренное изменение температуры и измеренное изменение давления, чтобы определить характеристики пучка. Технический результат - улучшение дозиметрии для управления обработкой детали. 3 н. и 21 з.п.ф-лы, 8 ил.
Наверх