Шихта для изготовления керамического материала

Изобретение относится к области получения изоляционных огнеупорных материалов и может быть использовано в производстве изоляторов металлокерамических ламп, свечей зажигания, изоляционных установочных деталей. Предложен новый состав шихты, включающий α-глинозем, стеклообразующую композицию и двухстронциевый борат при следующем соотношении компонентов, мас.%: двухстронциевый борат 2-3; стеклообразующая композиция 6-8, α-глинозем остальное. Стеклообразующая композиция представляет собой спек глинозема кварцевого песка и карбоната магния. Введение в состав шихты двухстронциевого бората обеспечивает уменьшение температуры предварительного обжига изделий и тем самым исключает припекание адсорбента - глинозема к поверхности деталей, а также повышает уровень диэлектрических свойств в области повышенных температур. 1 табл.

 

Изобретение относится к области изоляционных огнеупорных материалов, в частности к алюмооксидному материалу, и может быть использовано в производстве изоляторов металлокерамических ламп, свечей зажигания, изоляционных установочных деталей и т. д.

Известна шихта (см. авт. св. №346284 и №579261, МПК С04В 35/10) с содержанием 80-90 мас.% α-корунда (Аl2О3) и активатора спекания.

Основной недостаток этих материалов состоит в необходимости предварительного перевода основного исходного сырьевого материала - технического глинозема, содержащего 18-30 мас.% α-Аl2О3, в α-форму, что требует проведения высокотемпературной термической обработки (>1400°С).

Наиболее близким техническим решением к данному изобретению является алюмооксидный керамический материал марки ВК95 - 1 (ВГ - IV), включающий: α-корунд, стеклообразующую добавку, содержащую SiO2, CaO, MgO, и активатор спекания, в качестве которого используется борная кислота и растворимая соль магния (см. Рубашов М.А., Бердов Г.И., Гаврилов В.Н. и др. Термостойкие диэлектрики и их спаи с металлами в новой технике. - М.: Атомиздат. - 1980. - С.68-72).

При изготовлении изделий сложной конфигурации методом горячего литья под давлением отлитые детали помещают в адсорбент и проводят предварительный обжиг для удаления органической связки. Для получения прочности деталей после этого обжига, достаточной для проведения дальнейших технологических операций, необходима температура обжига 1050-1100°С. Однако это приводит к припеканию адсорбента вследствие взаимодействия его с поверхностью керамических деталей. Требуется дополнительная технологическая операция - зачистка деталей от адсорбента.

Технической задачей данного изобретения является создание такого состава керамического материала, который обеспечивает повышение уровня технологических и физико-технических свойств керамики.

Это достигается тем, что шихта для изготовления керамического материала, включающая глинозем с содержанием α-корунда ≥ 85 мас.%, стеклообразующую композицию и в качестве активатора спекания содержит двухстронциевый борат при следующем соотношении компонентов, мас.%:

- двухстронциевый борат 2-3;
- стеклообразующая композиция 6-8;
- α-глинозем остальное, до 100%,

причем стеклообразующая композиция представляет собой спек исходных компонентов: глинозема, кварцевого песка и карбоната магния.

Введение двухстронциевого бората обеспечивает проведение операции удаления органической связки в адсорбенте при температуре около +950°С. При этом достигается достаточная механическая прочность полуфабриката и отсутствует припекание адсорбента к деталям.

Эти признаки изобретения являются существенными и позволяют получать алюмооксидную керамику с высокими технологическими и физико-техническими свойствами.

Предложенный состав материала опробован в опытном производстве.

Примеры осуществления изобретения.

Для проверки заявляемого состава были подготовлены пять смесей ингредиентов, два из которых показали оптимальные результаты (см. таблицу).

Для приготовления шихты был взят технический глинозем марки ГЭФ. Оптимальные составы шихты керамического материала содержат, мас.%: глинозем ГЭФ 90-91; двухстронциевый борат 2-3; стеклообразующая композиция 6-8.

Двухстронциевый борат предварительно синтезировали из SrСО3 и Н3ВО3 обжигом при температуре 1100°С. Полученный материал измельчали до среднего размера зерна 5-6 мкм. Стеклообразующую композицию получали в результате обжига шихты при температуре 1300-1350°С, содержащей, мас.%: глинозем Г-00 35,4; молотый кварцевый песок 38,4; карбонат магния 26,2. Полученный материал измельчали до удельной поверхности (по ПСХ-2), составляющей около 10000 см2/г.

Компоненты шихты смешивали сухим способом с добавлением 0,6 мас.% олеиновой кислоты. Помол шихты производили до среднего размера зерна 3,8-4,2 мкм. Операция обжига шихты на спек была исключена. Шликер для горячего литья под давлением готовили с введением 11,5-12,5 мас.% парафина. Изделия формовали методом горячего литья под давлением. Температура предварительного обжига изделий из оптимальных составов составляла 950-1000°С, окончательного обжига - 1650-1660°С.

Составы шихты, технологические и физико-технические свойства керамики приведены в таблице в сравнении с материалом ВК95-1 (ВГ-IV).

Из таблицы следует, что шихта (составы 2, 3) для изготовления керамического материала по совокупности технологических (низкая температура предварительного обжига, отсутствие припекания адсорбента-глинозема к деталям, достаточная технологическая прочность полуфабриката) и физико-технических (малые диэлектрические потери, высокие значения удельного электросопротивления при повышенных температурах) свойств обладает наиболее высоким уровнем по сравнению с прототипом и граничными составами (составы 1, 4).

Таблица
Компоненты шихты Содержание компонентов, мас.%
ВК95-1 (прототип) Состав 1 Состав 2 Состав 3 Состав 4
Глинозем марки ГЭФ остальное до 100% 91 90 91 90
Стеклообразующая композиция 6-8 8 8 6 6
Активатор спекания - 1 2 3 4
Борная кислота 1-3 - - - -
Растворимая соль магния 1-2 - - - -
Свойство Технологические
1 Температура предварительного обжига, °С 1100 1050 1000 950 1000
2 Припекание адсорбента-глинозема к деталям значительное имеет место отсутствует отсутствует имеет место
3 Технологическая прочность полуфабриката достаточная недостаточная достаточная достаточная достаточная
4 Линейная усадка изделий, % 12,5 12,5 12,0 12,0 12,5
5 Температура окончательного обжига, °С 1680 1680 1660 1650 1660
Свойство Физико-технические
1 Водопоглощение, % 0,01 0,01 0,00 0,01 0,00
2 Плотность, г/см3 3,78 3,78 3,79 3,79 3,78
3 Прочность при статическом изгибе, МПа 370 365 375 380 365
4 КТЛР 107, °С-1 в интервале температур:
20-200°С 60 59 61 60 59
20-900°С 80 79 81 80 79
5 Диэлектрическая проницаемость на частоте f=1 МГц при температуре 20°С 9,8 9,8 9,9 9,8 9,8
6 Тангенс угла диэлектрических потерь (tgδ·104) на частоте f=1 МГц при температуре:
20°С 6 6 4 5 6
300°С 250 170 100 80 120
7 Удельное объемное электрическое сопротивление, Ом•см, при температуре:
20°С >1·1014 >1·1014 >3·1014 >5·1014 >2·1014
300°C 5·1010 8·1010 5·1011 8·1011 1·1011

Шихта для изготовления керамического материала, включающая α-глинозем и стеклообразующую композицию, отличающаяся тем, что она дополнительно содержит двухстронциевый борат при следующем соотношении компонентов, мас.%:

двухстронциевый борат 2-3
стеклообразующая композиция 6-8
α-глинозем остальное до 100%,

причем стеклообразующая композиция представляет собой спек исходных компонентов: глинозема, кварцевого песка и карбоната магния.



 

Похожие патенты:
Изобретение относится к керамическому материаловедению на базе оксида алюминия с использованием золь-гелиевых способов получения композиционных материалов и может быть использовано в процессе изготовления изделий, устойчивых к воздействию динамических и статических нагрузок и с высокой термостойкостью.
Изобретение относится к производству керамических изделий, в частности к получению материалов на основе оксида алюминия, которые используются при изготовлении износостойких керамических деталей.

Изобретение относится к технологии композиционных материалов, относящихся к классу керметов, и может быть использовано для получения прочных, износостойких изделий с относительно невысокой объемной массой, а также для изготовления абразивного инструмента со специальными поверхностными свойствами.

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики: износо- и химически стойких деталей оборудования, выдерживающих высокие статические нагрузки.

Изобретение относится к керамическим материалам на основе оксида алюминия и может быть использовано для изготовления деталей трения, работающих в условиях абразивного и гидроабразивного износа.

Изобретение относится к керамике, к алюмооксидной композиции (варианты), и к способу получения керамики, причем указанная алюмооксидная композиция содержит частицы альфа-окиси алюминия, имеющие отношение самого короткого диаметра к самому длинному диаметру от 0,3 до 1 и гранулометрический состав не более 5, получаемый из отношения Д90/Д10, где Д10 и Д90 представляют соответственно совокупный 10% диаметр и совокупный 90% диаметр совокупного распределения, изображенного со стороны малого диаметра, или содержит частицы альфа-окиси алюминия, имеющие многогранную форму, отношение Д/Н от 0,5 до 3,0, в котором Д представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а Н представляет максимальный диаметр частиц, перпендикулярный этой плоскости решетки, и гранулометрический состав не более 5, получаемый из отношения Д90/Д10, где Д10 и Д90 как определено выше.

Изобретение относится к процессу изготовления абразивных частиц. .
Изобретение относится к способам получения и использования расклинивающих агентов для разрыва породы, а также получения и использования добавок, препятствующих притоку в ствол скважины, для использования в операциях гидравлического разрыва

Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками

Изобретение относится к технологии высокотемпературных керамических материалов конструкционного назначения с повышенными термомеханическими свойствами (футеровка тепловых агрегатов, термостойкий огнеприпас, элементы ударопрочной защиты)

Изобретение относится к технологии получения керамических изделий на основе оксида алюминия с высокими механическими характеристиками, предназначенных для длительной эксплуатации в условиях повышенных истирающих нагрузок
Изобретение относится к волокнам из поликристаллического корунда, по существу состоящим из корунда и оксида элементов главных подгрупп I или II группы Периодической таблицы, которые могут быть использованы для изготовления тканей и композитных материалов
Изобретение относится к области химической технологии керамических высокопористых ячеистых материалов и предназначено для использования в процессах обращения с газообразными радиоактивными отходами (ГРО) и отработанным ядерным топливом (ОЯТ) на АЭС и радиохимических предприятиях атомной отрасли
Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани
Изобретение относится к способам получения корундового керамического материала, предназначенного для изготовления изделий из конструкционной керамики с повышенными статическими нагрузками. Технический результат - получение корундовой керамики, имеющей низкую температуру обжига при высоких показателях прочности при изгибе. В способе получения корундовой керамики, включающем измельчение и смешивание глинозема с предварительно спеченной стеклодобавкой-минерализатором и фторсодержащей добавкой, прессование и обжиг керамики, согласно изобретению, в качестве стеклодобавки-минерализатора используют трехкомпонентную стеклообразующую систему P2O5-B2O3-SiO2 при соотношении компонентов (1-2):(0,5-1,0):(2,5-3), предварительно спеченную при температуре 400-450°С. Стеклодобавку смешивают с глиноземом и с фторидами или хлоридами щелочных металлов при следующем соотношении компонентов сырьевой смеси, масс.%: глинозем 81-83, стеклодобавка-минерализатор 15-16, фториды или хлориды щелочных металлов 2-3. Обжиг керамики проводят при температуре 1310-1340°C. 2 табл.
Изобретение относится к керамическому материаловедению, в частности к получению материала для высокотемпературного применения на основе тугоплавких бескислородных и оксидных соединений, характеризующегося высокой прочностью, термической и окислительной стойкостью, стойкостью к термоудару при градиенте температуры до 2000 К в условиях воздействия высокоскоростного окислительного потока. Технический результат заключается в возможности использования указанного керамического материала при температуре Т=1800°С при комплексном воздействии механических и тепловых нагрузок в условиях окислительных сред. Это достигается тем, что композиционный керамический материал для высокотемпературного применения в окислительных средах получают из шихты, содержащей SiC, Y2O3, Al2O3 и/или Al2O3·MgO, при следующем соотношении компонентов, (% мас.): SiC 76-80, Y2O3 4-5, Al2O3 и/или Al2O3·MgO - остальное. Получаемый керамический материал имеет следующие характеристики: плотность 99% от теоретической, прочность при изгибе 400±25 МПа, прочность при сжатии 1200±40 МПа, твердость по Виккерсу 25-27 ГПа, K1c - 8,5-10,0 МПа·м1/2, окислительная стойкость ≤0,015 мг/см2сек, рабочая температура 1800°С. 5 пр., 1 табл.
Изобретение относится к области производства технической керамики и может быть использовано, в частности, для изготовления керамических бронеэлементов. Сущность изобретения заключается в том, что в шихте для изготовления керамики, содержащей смесь частиц оксида алюминия, диоксида титана, диоксида марганца и диоксида циркония, согласно изобретению от 5 до 10% входящих в состав шихты частиц имеет средний размер не более 120 нм, а остальная часть входящих в состав шихты частиц имеет средний размер от 0,5 до 2 мкм, при этом вышеуказанные компоненты входят в состав шихты при следующем соотношении, мас.%: оксид алюминия 92-96; диоксид титана 1-3; диоксид марганца 1-3; диоксид циркония 1-6. Технический результат - разработка шихты для изготовления керамического материала, имеющего высокую твердость, вязкость разрушения и относительно невысокую плотность при обеспечении относительно низкой температуры спекания шихты. 1 з.п. ф-лы, 5 пр.
Наверх