Устройство для обработки жидкостей

Изобретение относится к машиностроению и может быть применено для диспергирования, эмульгирования и обеззараживания технологических, например, смазывающих и охлаждающих жидкостей. Устройство содержит корпус, разделенный перегородкой с сопловыми отверстиями на камеру высокого давления и камеру кавитационной обработки. Объем камеры высокого давления относится к объему камеры кавитационной обработки как 2,0:0,8…,0:1,2. В камере высокого давления установлен соединенный с генератором импульсов электроискровой разрядник на расстоянии от перегородки L=(3…6)S, где S - величина зазора между электродами разрядника. Камера кавитационной обработки имеет форму раструба, плавно переходящую через выходное отверстие в выходной патрубок, выполненный в виде спирали Архимеда. Камера высокого давления имеет цилиндрическую форму со сферическим днищем. Входное отверстие снабжено обратным клапаном. Под перегородкой установлен датчик уровня жидкости, соединенный с выключателем генератора импульсов. Технический результат состоит в повышении эффективности обработки жидкости. 6 з.п. ф-лы, 2 ил.

 

Изобретение относится преимущественно к области машиностроения и может быть применено для диспергирования, эмульгирования и обеззараживания технологических, например, смазывающих и охлаждающих жидкостей.

Известно устройство для кавитационной обработки жидкостей, защищенное патентом РФ на изобретение №2057964 от 10.04.1906 г., МКИ F02M 33/00. Известное устройство содержит размещенные в общей камере подвижный и неподвижный струйные сопловые излучатели, каждый из которых выполнен в виде прикрепленных к основанию по спирали Архимеда лопастей с противоположным друг относительно друга направлением спиралей. При этом лопасти подвижного излучателя расположены между лопастями неподвижного излучателя. Устройство перемещения подвижного излучателя выполнено в виде установленного на его основании подпружиненного поршня. Пружинная полость сообщена с отводящим трубопроводом перепускным каналом. Такая конструкция известного устройства позволяет за счет энергии потока жидкости возбуждать в ней высокочастотные колебания, что позволяет производить кавитационную обработку жидкости. Это обеспечивает эмульгирование, диспергирование и обеззараживание жидкости. Однако с помощью известного устройства кавитационное воздействие на обрабатываемую жидкость обеспечивается лишь в отдельных областях потока жидкости (в кавитационных зонах). Таким образом жидкость обрабатывается известным устройством не в полном объеме. Это снижает эффективность обработки жидкости.

Известен также кавитационный реактор (патент РФ на полезную модель №25284 от 27.09.2002 г., МКИ B01F 25/04), который принят за прототип. Реактор по прототипу содержит корпус с сопловым отверстием. В корпусе установлен кавитатор конической формы, обращенный вершиной к сопловому отверстию и подвижный относительно него. В корпусе образованы входная камера и камера высокого давления. Последняя ограничена со стороны кавитатора мембраной, в которой выполнено сопловое отверстие. К основанию кавитатора с возможностью относительного перемещения прикреплена подвижная перегородка с отверстиями для выхода обрабатываемой жидкости. Сопловое отверстие выполнено расширяющимся в сторону кавитатора. Такая конструкция кавитационного реактора по прототипу позволяет за счет изменения площади сечения соплового отверстия и за счет изменения объема камеры высокого давления изменять величину зоны кавитации и область кавитационного воздействия в зависимости от состава обрабатываемой жидкости. Это позволяет повысить эффективность кавитационной обработки жидкости. Однако конструкция кавитационного реактора по прототипу так же, как и известное устройство по патенту №2057964, не обеспечивает обработку жидкости в полном объеме, поскольку часть жидкости может проходить через участки камеры высокого давления, в которых интенсивность кавитации меньше, чем у кромки кавитатора. Поэтому часть жидкости может оказаться недостаточно обработанной, что снижает эффективность кавитационного реактора по прототипу.

Техническим результатом предлагаемого устройства является повышение эффективности обработки жидкости.

Сущность изобретения заключается в том, что предлагаемое устройство для обработки жидкостей содержит корпус с входным и выходным отверстиями. В корпусе установлен кавитатор, выполненный в виде перегородки с одним или более сопловыми отверстиями, разделяющей корпус на камеру высокого давления и камеру кавитационной обработки, которая расположена по ходу потока обрабатываемой жидкости после камеры высокого давления. В камере высокого давления, снабженной входным отверстием, установлен электроискровой разрядник, соединенный с генератором импульсов. В отличие от прототипа камера кавитационной обработки имеет форму раструба, плавно переходящего через выходное отверстие в выходной патрубок, который выполнен в виде спирали Архимеда, и соединен с емкостью для сбора обработанной жидкости. Камера высокого давления имеет цилиндрическую форму со сферическим днищем. Во входном отверстии корпуса установлен обратный клапан с возможностью взаимодействия с седлом, расположенным во входном отверстии. Обратная седлу поверхность обратного клапана выполнена соответствующей внутренней поверхности днища камеры высокого давления. Входное отверстие снабжено патрубком, соединенным с емкостью, содержащей жидкость, подлежащую обработке.

Объем камеры высокого давления относится к объему камеры кавитационной обработки как 2,0:0,8…2,0:1,2. Электроискровой разрядник установлен на расстоянии от перегородки L=(3…6) S, где S - величина зазора между электродами разрядника.

В камере высокого давления под перегородкой установлен датчик уровня жидкости, соединенный с выключателем генератора импульсов. Сопловые отверстия в перегородке расположены равномерно по ее поверхности. Количество сопловых отверстий в перегородке определено из выражения: К=(0,1…0,5) d22/d12, где d1 - диаметр отверстия в перегородке, d2 - диаметр камеры высокого давления.

В случае, когда в перегородке выполнено одно сопловое отверстие, расположенное в ее центре, в камере кавитационной обработки над этим отверстием расположен клапан-рассекатель, имеющий каплеобразную форму и кольцевую юбку у острого конца. Клапан-рассекатель подпружинен относительно соплового отверстия. Камера кавитационной обработки имеет по этому варианту каплеобразную форму. Диаметр соплового отверстия составляет d1=(0,3…0,5)d2, где d2 - диаметр камеры высокого давления. Сопловые отверстия в перегородке могут быть выполнены в форме трубок Вентури.

Такая совокупность существенных признаков предлагаемого устройства практически исключает образование застойных зон в рабочем пространстве и за счет двойной обработки жидкости высоким давлением и кавитационным воздействием повышает эффективность обработки, обеспечивая высокую степень диспергирования и эмульгирования плохо растворимых или нерастворимых компонентов жидкости, а также более полно обеззараживая обрабатываемую жидкость.

Изобретение иллюстрируется чертежами, где на фиг.1 показан продольный разрез предлагаемого устройства при наличии нескольких сопловых отверстий в прегородке, а на фиг.2 - продольный разрез предлагаемого устройства по второму варианту - с одним сопловым отверстием в перегородке.

Предлагаемое устройство работает следующим образом.

Обрабатываемая жидкость, например водомасляная эмульсия для охлаждения зоны резания при механической обработке металлов (СОЖ), из емкости 23 самотеком поступает через трубопровод 22, патрубок 21 и входное отверстие 2 в камеру высокого давления 6. Обратный клапан 18 под действием гидростатического давления обрабатываемой жидкости поднимается, образуется зазор между клапаном 18 и седлом 19, пропускающий жидкость в камеру 6 высокого давления. По мере заполнения этой камеры уровень жидкости в ней поднимается до нижней поверхности перегородки 4. При этом датчик 24 уровня жидкости срабатывает и выключателем 25 замыкает разрядную цепь, состоящую из проводов 10 и электродов 8 и 9 электроискрового разрядника. Генератор импульсов 11 подает высокое напряжение на электроды 8 и 9, установленные на изоляторах 12 в отверстиях корпуса 1 - происходит искровой разряд. Обрабатываемая жидкость в зоне разряда, перегреваясь, взрывообразно расширяется, возникает гидравлический удар, давление, развивающееся в канале разряда, распространяется в окружающей жидкости в виде ударной волны во всем объеме камеры 6, в результате захлопывается обратный клапан 18, плотно прилегая к седлу 19, выполненному в отверстии 2 корпуса 1. Это препятствует выбросу обрабатываемой жидкости обратно в емкость 23. Резкое повышение давления и мгновенно возникающая высокая температура способствуют дроблению частиц компонентов обрабатываемой жидкости, трудно растворимых или не растворимых в основе этой жидкости (например, масла в воде), что способствует диспергированию и эмульгированию этих компонентов. Одновременно высокое давление и локальное повышение температуры губительно действуют на микроорганизмы, образовавшие колонии в обрабатываемой жидкости за время ее эксплуатации и хранения. Происходит частичное обеззараживание обрабатываемой жидкости.

Максимальное амплитудное значение волны давления, образующейся в результате электроискрового разряда через зазор S между электродами 8 и 9, достигается в области 2,5<S/L≤5,5. Из этого следует, что наиболее эффективной работа установки будет, если расстояние L от перегородки 4, ограничивающей объем камеры 6, будет выбрано в пределах L=(3…6)S.

Сферическая форма днища 17 корпуса 1 и поверхности 20 обратного клапана 18 способствует равномерному отражению ударной волны к оси камеры 6. Цилиндрическая форма камеры 6 создает условия для равномерного, без завихрений и потерь мощности распространения ударной волны к поверхности перегородки 4.

Ударная волна давления, достигая поверхности перегородки 4, выбрасывает обрабатываемую жидкость через сопловые отверстия 5 в камеру 7. При этом в результате резкого перепада давления на выходе из сопловых отверстий 5 происходит дополнительная кавитационная обработка жидкости, что усиливает диспергирование, эмульгирование и обеззараживание тех ее объемов, которые оказались недостаточно обработанными в камере 6 высокого давления. Чтобы кавитационная обработка жидкости в камере 7 была эффективной, количество сопловых отверстий 5 в перегородке 4 определено из выражения: К=(0,1…0,5)d22/d12, где d1 - диаметр сопловых отверстий в перегородке 4, d2 - диаметр камеры 6 высокого давления. Оказалось, что если принять К>0,5 d22/d12, то кавитации на выходе сопловых отверстий 5 в камеру 7 может не произойти, а при К<0,5d22/d12 за время электроискрового разряда между электродами 8 и 9 выброс жидкости в камеру 7 будет неполным. В любом из этих случаев снизится эффективность обработки жидкости.

Объем камеры 6 высокого давления относится к объему камеры 7 кавитационной обработки как 2,0:0,8…2,0: 1,2. Оказалось, что в этом диапазоне отношений объемов камер 6 и 7 обеспечивается наибольшая эффективность обработки жидкости. При отношении объема камеры 6 к объему камеры 7 более 2,0:0,8 обрабатываемая жидкость не успевает полностью выброситься из камеры 6 в камеру 7. При отношении этих объемов менее 2,0:1,2 уменьшается давление в камере 7, что нарушает условие возникновения кавитации. В результате за пределами выбранного диапазона отношений объемов камер 6 и 7 ухудшается эффективность обработки жидкостей.

Форма камеры 7 кавитационной обработки в виде раструба способствует повышению и более равномерному распределению давления в объеме камеры 7, а также уменьшает вероятность образования застойных зон в объеме этой камеры. Выполнение камеры 7 в крышке 13 повышает технологичность сборки предлагаемого устройства.

После прохождения через камеру 7 обработанная жидкость выбрасывается через отверстие 3 в корпусе 1, патрубок 14 и трубопровод 15 в емкость 16 для сбора обработанной жидкости. Выполнение патрубка 14 в форме спирали Архимеда позволяет поддерживать высокое давление при прохождении через него жидкости и обеспечивает более полный выброс обработанной жидкости из камеры 7, что также способствует повышению эффективности обработки.

После выброса жидкости в камеру 7 датчик 24 уровня жидкости, воздействуя на выключатель 25, разрывает вторичную цепь генератора импульсов 11. За счет давления подлежащей обработке жидкости, находящейся в емкости 23, поднимется клапан 18, вновь произойдет заполнение камеры 6 жидкостью из емкости 23 через трубопровод 22, патрубок 21, отверстие 2 и зазор между клапаном 18 и седлом 19. Цикл работы предлагаемого устройства будет повторяться до тех пор, пока не кончится жидкость в емкости 23 или не будет перекрыт трубопровод 22.

По другому варианту (фиг.2) обрабатываемая жидкость поступает из камеры 6 в камеру 7 через одно сопловое отверстие 5, расположенное в центре перегородки 4. Диаметр соплового отверстия 5 в этом случае составляет d1=(0,3…0,5)d2, где d2 - диаметр камеры высокого давления. При d1<0,3d2 выброс жидкости из камеры 6 в камеру 7 будет не полным, а при d1>0,5d2 уменьшается давление в камере 7, что нарушает условие возникновения кавитации. В обоих случаях понизится эффективность обработки жидкости. Помещенный над отверстием 5 клапан-рассекатель 26 под действием давления жидкости в камере 6 приподнимается над отверстием 5, сжимая пружину 28. Жидкость поступает в камеру 7 из камеры 6 через образовавшийся зазор между кромками отверстия 5 и поверхностью клапана-рассекателя 27. Происходит кавитационная обработка жидкости. Кольцевая юбка 27 у острого конца клапана-рассекателя 26 способствует завихрению жидкости, рсширению зоны кавитации и более равномерному распространению кавитационного процесса в объеме камеры 7. Каплеобразная форма клапана-рассекателя 26 и камеры 7 кавитационной обработки исключает возможность образования застойных зон в камере 7. Все это повышает эффективность обработки жидкости.

Сопловые отверстия 5 предлагаемого устройства по любому из вариантов могут быть выполнены в форме трубок Вентури, что также повысит эффективность обработки жидкости за счет усиления эффекта кавитации.

Предлагаемое устройство может быть изготовлено и применено с помощью известных в технике средств и материалов. Корпус 1 устройства и его крышка 13 с образованной в ней камерой 7 кавитационной обработки могут быть выполнены из сталей или легких сплавов, например, с помощью литья. Клапаны 18 и 27, перегородка 4 с сопловыми отверстиями 5 могут быть изготовлены с применением известных способов механической обработки из таких же материалов. Электроды 8 и 9 могут быть изготовлены из меди или ее сплавов либо из высокопрочных металлов, стойких против электроискровой эрозии, например, из вольфрама, путем прессования или токарной обработки. Изоляторы 12 для установки электродов 8 и 9 в отверстиях корпуса 1 могут быть выполнены из известных изоляционных материалов, например, из фторопласта, прессованием или токарной обработкой. Генератором импульсов 11 может служить, например, батарея конденсаторов. Датчик 24 уровня жидкости в камере 6 может быть также известной конструкции, например, поплавкового типа. Связь датчика 24 с выключателем 25 может быть механической, с помощью рычага или троса. Выходной патрубок 14, имеющий форму спирали Архимеда, можно изготовить путем штамповки из двух половин - полупатрубков с последующей сваркой их продольными швами. Пружина 28 может быть жестко закреплена на корпусе 1 с помощью тонкого ребра - кронштейна.

Таким образом, предлагаемое устройство обеспечивает достижение технического результата, заключающегося в повышении эффективности обработки жидкости, и может быть изготовлено и использовано с помощью известных в технике средств. Следовательно, предлагаемое устройство обладает промышленной применимостью.

1. Устройство для обработки жидкостей, содержащее корпус с входным и выходным отверстиями и установленный в корпусе кавитатор, выполненный в виде перегородки с одним или более сопловыми отверстиями, разделяющей корпус на камеру высокого давления и камеру кавитационной обработки, которая расположена по ходу потока обрабатываемой жидкости после камеры высокого давления, причем в камере высокого давления установлен искровой разрядник, соединенный с генератором импульсов, отличающееся тем, что камера кавитационной обработки имеет форму раструба, плавно переходящую через выходное отверстие в выходной патрубок, выполненный в виде спирали Архимеда и соединенный с емкостью для сбора обработанной жидкости, а камера высокого давления имеет цилиндрическую форму со сферическим днищем, причем во входном отверстии установлен обратный клапан с возможностью взаимодействия с седлом, расположенным во входном отверстии, а обратная седлу поверхность клапана выполнена соответствующей внутренней поверхности днища камеры высокого давления, входное отверстие снабжено патрубком, соединенным с емкостью, содержащей жидкость, подлежащую обработке.

2. Устройство по п.1, отличающееся тем, что объем камеры высокого давления относится к объему камеры кавитационной обработки как 2,0:0,8…2,0:1,2, причем электроискровой разрядник установлен на расстоянии от перегородки L=(3…6)S, где S - величина зазора между электродами разрядника.

3. Устройство по п.1, отличающееся тем, что в камере высокого давления под перегородкой установлен датчик уровня жидкости, соединенный с выключателем генератора импульсов.

4. Устройство по п.1, отличающееся тем, что сопловые отверстия в перегородке расположены равномерно по ее поверхности, а количество этих отверстий определено из выражения: К=(0,1…0,5)d22/d12, где d1 - диаметр отверстий в перегородке; d2 - диаметр камеры высокого давления.

5. Устройство по п.1, отличающееся тем, что в случае, когда в перегородке выполнено одно сопловое отверстие, расположенное в ее центре, в камере кавитационной обработки над этим отверстием расположен клапан-рассекатель, имеющий каплеобразную форму с кольцевой юбкой у острого конца и подпружиненный относительно соплового отверстия, причем камера кавитационной обработки имеет каплеобразную форму, а диаметр соплового отверстия составляет d1=(0,3…0,5)d2, где d2 - диаметр камеры высокого давления.

6. Устройство по п.1, отличающееся тем, что сопловые отверстия в перегородке выполнены в форме трубок Вентури.



 

Похожие патенты:

Изобретение относится к устройствам для диспергирования в потоке движущейся жидкости пузырьков газа или жидкости, несмешивающейся с несущей жидкостью, и может быть использовано для образования газожидкостных смесей во флотационных установках и аэрации грунтовых вод в процессах водоподготовки.

Изобретение относится к способу гомогенизации находящейся под давлением жидкой эмульсии, такой как молоко. .

Изобретение относится к смесителям для получения эмульсий путем кавитационной обработки потока жидкостной смеси в теплоэнергетике, металлообработке, в химической, лакокрасочной, пищевой промышленности.

Изобретение относится к оборудованию для гомогенизации и тепловой обработки суспензий, и может быть использовано в консервной и пищевой промышленности. .

Смеситель // 1558448
Изобретение относится к аппаратам для перемешивания и может найти применение в нефтехимической, нефтеперерабатывающей и других отраслях промышленности. .

Изобретение относится к области переработки жидких сред, в частности к физико-химическому изменению исходного жидкого углеводородного сырья, например нефти и нефтепродуктов, получению жидких композиционных материалов, в том числе наноструктурированных жидкостей, и может использоваться в химической, нефтехимической, нефтеперерабатывающей пищевой, фармацевтической промышленности

Изобретение относится к средствам получения высокодисперсных гомогенизированных смесей с заданной концентрацией компонентов
Изобретение относится к изготовлению резиновой смеси для автомобильной шины на основе ненасыщенных каучуков
Изобретение относится к изготовлению резиновой смеси для автомобильной шины
Изобретение относится к изготовлению резиновой смеси для автомобильной шины

Настоящее изобретение направлено на жидкие композиции для кондиционирования ткани и способы их получения и применения. Описана композиция кондиционера для ткани, имеющая вязкость от 5 сПз до 5000 сПз, при этом композиция содержит от 4 % до 30 % по массе одного или более активных веществ кондиционера для ткани, которое представляет собой соединение сложноэфирного четвертичного аммония, выбранное из группы, состоящей из сложных моноэфиров ацил-оксиэтил- N,N-диметиламмоний хлорида, сложных диэфиров ацил-оксиэтил-N,N-диметиламмоний хлорида и их смесей, при этом указанное активное вещество содержит частицы, при этом частицы имеют гранулометрический показатель от 750 до 3000: от 1 м.д. до 5000 м.д. электролита, от 60 до 96 % носителя, содержащего воду и необязательно один или более вспомогательных ингредиентов. Технический результат - высокая эффективность активного вещества кондиционера для ткани. 3 н. и 39 з.п. ф-лы, 10 пр., 3 ил., 8 табл.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации гидродинамических физико-химических, тепломассообменных процессов в системах «жидкость-жидкость» и жидкость-газ». Устройство содержит корпус с передней торцовой крышкой, консольно закрепленные упругие заостренные пластины, расположенные напротив горизонтальных осей щелевидных участков конических сопел с возможностью осевого смещения. Предусмотрен радиальный патрубок ввода основного компонента. Входной патрубок основного компонента, имеющий цилиндрический участок может перемещаться в осевом направлении. Смесительный элемент представляет собой цилиндрический корпус с внутренней конической поверхностью, на которой выполнены не менее двух радиальных проточек. В торцовой перегородке корпуса, где находится четное количество сквозных пересекающихся каналов, закреплена ступенчатая цилиндрическо-коническая вставка. На ее цилиндрическом конце, находящемся напротив щелевидного сопла, выполнена лыска, на которой жестко закреплена упругая пластина одной толщины. Пластина имеет П-образную форму с пластинами-ножками разной длины. Средняя ступень, значительно большего диаметрального размера, имеет коническую поверхность и находится внутри корпуса смесительного элемента. На другой цилиндрической поверхности ступенчатой вставки закреплены стержни с консольной частью разной длины, расположенные по окружностям в несколько рядов вдоль оси. В каждом последующем ряду оси стержней смещены по длине окружности относительно осей стержней предыдущего ряда на одинаковое расстояние. Внутренняя часть задней торцовой крышки, по оси которой находится выходной патрубок, выполнена в виде поверхности, близкой к сферической. Разность длин консольных пластин-ножек П-образной упругой пластины выбирается таким образом, чтобы разность частот, генерируемая этими элементами, не превышала 5%. Оси входа и выхода пересекающихся сквозных каналов находятся на одном диаметре и располагаются друг напротив друга на боковых поверхностях торцовой перегородки таким образом, что в каждой паре соседних каналов вход первого канала находится напротив выхода второго канала, а вход второго канала находится напротив выхода первого канала. Длина консольной части стержней в каждом ряду одинакова, но в каждом следующем ряду уменьшается таким образом, чтобы коническая поверхность, прилегающая к наружной поверхности торцов стержней была эквидистантна внутренней конической поверхности корпуса смесительного элемента. Форма поперечного сечения консольной части стержней может быть любой (круг, треугольник, многоугольник и др.). На боковой поверхности стержней выполнены не менее одной продольной канавки с округлой формой поперечного сечения, имеющих длину не менее чем 3/4 длины консольной части стержня. Стержни установлены с произвольной ориентацией боковых поверхностей. Диаметр, на котором находятся оси выхода сквозных пересекающихся каналов, должен быть больше внутреннего диаметра выходного патрубка в 1,4…1,6 раза. В устройстве осуществляется комплексное воздействие на обрабатываемую среду: акустических колебаний, кавитации, турбулентных пульсаций, сдвиговых напряжений, вихревых потоков. Технический результат изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов. 5 з.п. ф-лы, 6 ил.

Изобретение относится к технологии получения нанопорошков феррита кобальта в микромасштабном реакторе. Способ заключается в подаче исходных компонентов - смеси растворов солей кобальта и железа в соотношении компонентов, отвечающих стехиометрии CoFe2O4, и раствора щелочи в соотношении с растворами солей, обеспечивающем кислотность среды в диапазоне от 7 до 8, отвечающей условиям соосаждения компонентов, при этом растворы исходных компонентов подают в виде тонких струй диаметром от 50 до 1000 мкм со скоростью от 1,5 до 20 м/с, сталкивающихся в вертикальной плоскости под углом от 30° до 160°, при температуре в диапазоне от 20°С до 30°С, и давлении, близком к атмосферному, причем соотношение расходов исходных компонентов задают таким образом, что при столкновении струй образуется жидкостная пелена, в которой происходит смешивание и контакт растворов исходных компонентов. Микрореактор для осуществления способа содержит корпус 1 и патрубки 2 с соплами 3 для подачи исходных компонентов 10 и патрубок 4 для отвода продуктов, корпус 1 микрореактора имеет цилиндрическую форму с коническим днищем 5, крышку 6, патрубки 2 с соплами 3 для подачи исходных компонентов 10 выполнены с возможностью тонкой регулировки направления струи, в крышке 6 соосно корпусу 1 установлен патрубок 9 для подачи продувочного газа, а в днище 5 установлен выпускной патрубок 4 для отвода продувочного газа и продуктов реакции, причем площадь выпускного патрубка 4 в 20-50 раз превышает суммарную площадь всех патрубков для подачи исходных компонентов. В цилиндрической части корпуса могут быть установлены два или более патрубков 17 для подачи раствора поверхностно-активных веществ в виде тонких струй диаметром от 10 до 1000 мкм, направленных на жидкостную пелену контактирующих растворов исходных компонентов. Изобретение позволяет снизить температуру и давление, необходимые для проведения синтеза оксидных наноразмерных частиц феррита кобальта, снизить затраты энергии и обеспечить непрерывность процесса с возможностью его осуществления в промышленном масштабе, сократить стоимость оборудования, увеличить выход и селективность процесса, обеспечить оптимальные условия для быстропротекающих реакций за счет поддержания стабильных и эффективных гидродинамических условий контактирования реагентов и быстрого отвода продуктов реакции. 2 н. и 1 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к способу изготовления однофазной фазостабильной жидкости. Способ заключается в том, что на первом этапе смешивают липофильную жидкость с гидрофильной жидкостью так, что образуется смесь жидкостей, на втором этапе статическое давление смеси устанавливают ниже давления пара по меньшей мере одной из жидкостей так, что, посредством так называемой интенсивной кавитации, образуются кавитационные пузыри, и на третьем этапе кавитационные пузыри схлопываются, причем образуется однофазная фазостабильная жидкость. Смесь приводят во вращательное движение посредством шнека со спиральной сужающейся трубой. Перед вторым этапом смесь приводят во вращательное движение. Диаметр трубы шнека в ее самой тонкой части составляет не более 30% от диаметра около впускного отверстия. Изобретение обеспечивает создание способа изготовления фазостабильных жидкостей из липофильной фазы и гидрофильной фазы без эмульгаторов. 6 з.п. ф-лы, 2 ил.
Наверх