Призматический детектор

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах. Технический результат - повышение эффективности, понижение порога обнаружения источника излучений, расширение спектрометрических возможностей. В призматическом детекторе, содержащем последовательные детекторные элементы, внешние поверхности которых покрыты слоями защитного материала, и фотоприемные устройства, каждый детекторный элемент, выполненный в виде треугольной призмы с элементом, отражающим свет, расположенным на наклонной поверхности призмы, содержит слой сцинтиллятора, а фотоприемные устройства расположены на общем основании, а светочувствительная поверхность детекторного элемента и поверхность слоя сцинтиллятора расположены во взаимно перпендикулярных плоскостях. 3 ил.

 

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах.

Известен детектор проникающих излучений, содержащий волоконный модуль, собранный из сцинтиллирующих оптических волокон, оптическую систему регистрации излучения, выходящего из торцов этих волокон.

Волоконный модуль выполнен в виде комбинированного люминесцентного экрана-преобразователя, сцинтиллирующие волокна которого составлены из последовательно соединенных отрезков различных типов сцинтиллирующих материалов.

Оптическая система содержит отклоняющее зеркало и не менее двух оптических каналов, выполненных в виде последовательно расположенных вдоль оси канала входного проекционного объектива со светофильтром, усилителя изображения, масштабирующего объектива, с которого световой поток попадает на ПЗС-матрицу. Патент Российской Федерации №2290666, МПК G01T 1/20, G01N 23/02, 2006 г.

Известен сцинтилляционный призматический детектор со сцинтилляторами различного типа с различными спектрами излучения и фотоприемниками.

Сцинтиллятор выполнен составным и содержит не менее двух составных элементов различного типа с различными спектрами излучения, установленных последовательно, на одном из торцов составного сцинтиллятора установлено такое же количество фотоприемников со спектральными чувствительностями или светофильтрами, согласованными с соответствующим типом составного элемента сцинтиллятора.

Для регистрации быстрых нейтронов использован пластиковый сцинтиллятор, для регистрации тепловых нейтронов сцинтиллятор изготовлен из кристалла 6LiF, а для регистрации рентгеновских и гамма-квантов сцинтиллятор изготовлен из кристалла NaI(T1). Патент Российской Федерации на полезную модель №76141, МПК G01T 1/20, 2008 г.

Известен сцинтилляционный призматический детектор, содержащий два разных сцинтиллятора, светящиеся в двух диапазонах длин волн, расположенных последовательно друг за другом.

Первый служит для регистрации мягкого рентгеновского излучения, второй - для регистрации жесткой компоненты.

Первый элемент сцинтиллятора включает гадолиний и имеет толщину от 0.03 мм до 0.06 мм; второй элемент сцинтиллятора включает отдельный кристаллический вольфрамат кадмия, толщиной от 2 мм до 3 мм.

Один из оптических датчиков включает кремниевый фотодиод. Полная толщина элементов сцинтиллятора от 1.0 мм до 10.0 мм.

Общая толщина сцинтиллирующих кристаллов достаточна для поглощения 99% всего излучения. Патент США №7388208, МПК G01T 1/00, 2008 г. Прототип.

Основным недостатком всех устройств является не полное разделение сигналов, возникающих в том или ином фотоприемнике по нескольким причинам:

- из-за частичного перекрытия спектров оптического излучения существующих прозрачных сцинтилляторов и не идеальности светофильтров, стоящих перед фотоприемниками, каждый из которых пропускает частично свет от другого сцинтиллятора,

- из-за амплитудного распределения энерговыделения в каждом из сцинтилляторов, обусловленного как спектром регистрируемого излучения, так и размером сцинтиллятора,

- из-за ослабления света в сцинтилляторах и светофильтрах.

Уменьшение влияния этого недостатка с помощью амплитудной дискриминации регистрируемого сигнала или другими средствами ведет к уменьшению эффективности детектора.

Недостатками устройств являются также низкая чувствительность обнаружения источников ионизирующих излучений из-за наличия собственных шумов фотоприемных устройств, невозможность учета вклада рассеянного в детекторе излучения, необходимость использования только прозрачных сцинтилляторов, отличающихся в необходимой степени спектром оптического излучения.

Изобретение устраняет недостатки аналога и прототипа.

Техническим результатом изобретения является повышение эффективности, понижение порога обнаружения источника излучений, расширение спектрометрических возможностей за счет применения набора сцинтилляционных детекторных элементов и последующей математической обработки количества поступивших с них сигналов, расширение спектра используемых сцинтилляционных материалов, включая дисперсные и порошковые.

Технический результат изобретения достигается тем, что в призматическом детекторе, содержащем последовательные детекторные элементы, внешние поверхности которых покрыты слоями защитного материала, и фотоприемные устройства, каждый детекторный элемент, выполненный в виде треугольной призмы с элементом, отражающим свет, расположенным на наклонной поверхности призмы, содержит слой сцинтиллятора, а фотоприемные устройства расположены на общем основании, а светочувствительная поверхность детекторного элемента и поверхность слоя сцинтиллятора расположены во взаимно перпендикулярных плоскостях.

Требуемое количество однотипных детекторных элементов в призматическом детекторе определяется назначением детектора и зависит от энергетического спектра регистрируемого излучения, а также материала сцинтиллятора.

Существо изобретения поясняется на чертежах.

На фиг.1 представлен детекторный призматический элемент, где: 1 - слой дисперсного или порошкового сцинтиллятора, 2 - треугольные призмы, 3 - фотоприемное устройство, 4 - элемент, отражающий свет, нанесенный на грань призмы, 5 - сцинтилляционная вспышка, 6 - клеевой слой с функцией оптического контакта.

На фиг.2 представлен вид детектора сверху, где: 1 - слои дисперсного или порошкового сцинтиллятора, 2 - треугольные призмы, 3 - фотоприемные устройства, 4 - элемент, отражающий свет, нанесенный на грань призмы, X - направление излучения, 7 - основание для крепления фотоприемных устройств.

Треугольные призмы 2 и элемент, отражающий свет, 4 выполнены из наименее ослабляющего регистрируемое излучение материала.

Например, для изготовления призм 2 использован прозрачный полимерный материал, в частности полиметилметакрилат, а элемент, отражающий свет, 4 изготовлен на основе слоев диэлектрика.

Вся конструкция помещена в светозащищенный корпус.

На фиг.3 представлена двухканальная схема обработки сигналов, где: 1 - слой дисперсного или порошкового сцинтиллятора; 2 - призматические сборки; 3, 31 - фотоприемные устройства, 8 и 81 - аналоговые усилители; 9 и 91 - дискриминаторы с регулируемыми порогами дискриминации; 10 - схема совпадений.

Устройство работает следующим образом.

Излучение в виде рентгеновского или гамма-кванта направляют на торец сцинтилляционного детектора (фиг.1).

При возбуждении квантом сцинтилляционной вспышки в одном из слоев сцинтиллятора дисперсного или порошкового сцинтиллятора 1 свет от сцинтилляционной вспышки 5 выходит в основном через поверхности слоя сцинтиллятора 1 в светоотражающие призмы 2.

В светоотражающих призмах 2 свет направляется элементом, отражающим свет (элемент 4), через клеевой слой (оптический контакт) 6 на фотоприемные устройства 3 и 31, в которых под его действием возникает электрический сигнал.

Сигналы с фотоприемников 3 и 31 (кремниевых фотоумножителей) поступают на аналоговые усилители 8 и 81, после которых аналоговый сигнал поступает на дискриминаторы 9 и 91 с регулируемыми порогами дискриминации (фиг.3).

Логические сигналы с дискриминаторов 9 и 91 идут на схему совпадений 10. В случае если на обоих входах схемы совпадений 8 появляются сигналы, схема совпадений 10 вырабатывает сигнал запроса, который хранится в выходном регистре схемы.

Внешний контроллер (не показан) опрашивает выходные регистры схемы совпадений 10 и в случае наличия в них сигнала (запроса) осуществляет считывание сигналов для их передачи в компьютер и дальнейшего анализа. Все логические схемы выполнены в стандарте ЭСЛ. В качестве дискриминаторов 9 и 91 использованы микросхемы AD 96687BP, а в качестве схемы совпадений 10 использована микросхема HEL (MC10LD1).

Количество сигналов запроса с каждого слоя по окончании регистрации анализируют и с помощью компьютерной программы производят восстановление спектра излучения.

Для восстановления спектра излучения источника решается система интегральных уравнений:

где Qi - количество запросов с i-го слоя (пластины) многослойного детектора;

n - число слоев; Si(E) - чувствительность i-го слоя к потоку квантов с энергией Е;

φ(Е) - искомая энергетическая зависимость падающего на детектор потока квантов.

Система уравнений решается с использованием итерационного метода минимизации направленного расхождения. Тараско М.З. Метод минимума направленного расхождения в задачах поиска распределений. Препринт ФЭИ №1446. Обнинск, 1983.

Призматический детектор, содержащий последовательные детекторные элементы, внешние поверхности которых покрыты слоями защитного материала, и фотоприемные устройства, отличающийся тем, что каждый детекторный элемент, выполненный в виде треугольной призмы с элементом, отражающим свет, расположенным на наклонной поверхности призм, содержит слой сцинтиллятора, а фотоприемные устройства расположены на общем основании, а светочувствительная поверхность детекторного элемента и поверхность слоя сцинтиллятора расположены во взаимно перпендикулярных плоскостях.



 

Похожие патенты:

Изобретение относится к регистрации рентгеновского и гамма излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к контролю содержимого багажа на контрольно-пропускных пунктах.

Детектор // 2377601
Изобретение относится к области регистрации ионизирующих излучений с помощью сцинтилляционных детекторов. .

Изобретение относится к области регистрации радиационных излучений сцинтилляционными детекторами. .

Годоскоп // 2371740
Изобретение относится к области обнаружения радиоактивных материалов и источников. .

Изобретение относится к области обнаружения радиоактивных материалов и источников с помощью радиационных детекторов с пластмассовым сцинтиллятором. .

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к области приборостроения и может быть использовано для регистрации излучений радиационными методами. .

Изобретение относится к области регистрации ионизирующих излучений, к области обнаружения источника ионизирующего излучения на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, таможенных службах и т.д.

Изобретение относится к области приборостроения и может найти применение для дистанционного обнаружения и контактной идентификации радиоактивных веществ. .

Изобретение относится к области термоэкзоэлектронной дозиметрии электронных пучков; может быть использовано для контроля радиационной обстановки в местах испытания и функционирования импульсных электронных пушек и электронно-лучевой техники.

Изобретение относится к области детектирования ядерных излучений, в частности, быстрых нейтронов

Изобретение относится к фотоприемным устройствам для черенковских РИЧ-детекторов (RICH-Ring Imaging Cherenkov), регистрирующих кольцевое черенковское излучение, и может быть использовано в экспериментах в области физики элементарных частиц высоких энергий (ионов, каонов и протонов) для определения их зарядов и скоростей в широком диапазоне их импульсов и для их идентификации

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения и идентификации опасных материалов как активными, так и пассивными методами на контрольно-пропускных пунктах, железнодорожных станциях, в аэропортах, пунктах таможенного досмотра, публичных местах и т.д

Изобретение относится к детектору нейтронов для детектирования нейтронов в областях с существенным - или -излучением, содержащему чувствительный к нейтронам кристалл-сцинтиллятор (10), обеспечивающий сигнал захвата нейтрона, который сильнее сигнала захвата -излучения, с энергией 3 МэВ, полупроводниковый фотодетектор, оптически соединенный с кристаллом-сцинтиллятором, причем кристалл-сцинтиллятор и полупроводниковый фотодетектор (20) выбирают таким образом, чтобы время сбора полного заряда для сигналов сцинтиллятора в полупроводниковом фотодетекторе превышало время сбора полного заряда для сигналов, генерируемых непосредственно детектированием ионизирующего излучения в полупроводниковом фотодетекторе, детектор нейтронов также содержит устройство сэмплирования сигналов детектора, устройство (35) обработки цифровых сигналов, средство, которое отличает сигналы непосредственно из полупроводникового фотодетектора, индуцированные - или -излучением и по меньшей мере частично поглощаемые полупроводниковым фотодетектором, от сигналов света, поступающих в полупроводниковый фотодетектор, испускаемые кристаллом-сцинтиллятором после захвата по меньшей мере одного нейтрона, путем разделения по форме импульса, используя различие между временем сбора полного заряда для сигналов сцинтиллятора от времени сбора полного заряда для сигналов, генерируемых прямым детектированием ионизирующего излучения в полупроводниковом фотодетекторе, и средство, которое отличает индуцированные нейтронами сигналы от индуцированных -излучением сигналов в кристалле-сцинтилляторе путем разделения разных сигналов по высоте их импульса, используя различие между количеством фотонов, сгенерированных нейтроном и -излучением, в интересующей области

Годоскоп // 2416112
Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для обнаружения радиоактивных материалов и источников

Изобретение относится к сцинтилляционным детекторам для регистрации ионизирующих излучений, обнаружения источников излучений, определения направления на них и их идентификации, для измерения спектра быстрых нейтронов

Изобретение относится к области детекторов радиоактивного излучения сцинтилляционного типа для использования в скважинном каротажном инструменте

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий. Сцинтиллятор для детектирования нейтронов содержит кристалл фторида металла из ряда, включающего LiCaAlF6, LiSrAlF6, LiYF4, служащий в качестве матрицы, в котором содержание атомов 6Li в единице объема (атом/нм3) от 1,1 до 20. Кристалл имеет эффективный атомный номер от 10 до 40 и содержит, по меньшей мере, один вид лантаноида, выбранного из группы, состоящей из церия, празеодима и европия. Нейтронный детектор содержит указанный сцинтиллятор и фотодетектор. Для получения кристалла фторида металла расплавляют смесь, составленную из фторида лития, фторида указанного металла, имеющего валентность 2 или выше, и фторида лантаноида, и выращивают монокристалл из расплава. Сцинтиллятор по изобретению имеет высокую чувствительность к нейтронному излучению и пониженный фоновый шум, связанный с γ-лучами. 3 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Изобретение относится к устройству для детектирования нейтронного излучения, предпочтительно тепловых нейтронов, содержащему гамма-лучевой сцинтиллятор, упомянутый сцинтиллятор содержит неорганический материал с длиной ослабления Lg менее 10 см, предпочтительно, менее 5 см для гамма-лучей с энергией 5 МэВ для обеспечения высокой способностью торможения гамма-излучения для энергичных гамма-лучей в гамма-лучевом сцинтилляторе, причем гамма-лучевой сцинтиллятор дополнительно содержит компоненты, для которых умножение сечения захвата нейтрона на концентрацию дает длину поглощения Ln для тепловых нейтронов, которая больше 0,5 см, но меньше пятикратной длины ослабления Lg, предпочтительно, меньше двукратной длины ослабления Lg для гамма-лучей с энергией 5 МэВ в сцинтилляторе, причем нейтронпоглощающие компоненты гамма-лучевого сцинтиллятора высвобождают энергию, сообщенную возбужденным ядрам после захвата нейтрона, в основном посредством гамма-излучения, причем гамма-лучевой сцинтиллятор имеет диаметр или длину края по меньшей мере 50% Lg, предпочтительно, по меньшей мере Lg, для поглощения существенной части энергии гамма-лучей, выделяемой после захвата нейтрона в сцинтилляторе, устройство дополнительно содержит детектор света, оптически соединенный с гамма-лучевым сцинтиллятором для детектирования количества света в гамма-лучевом сцинтилляторе, устройство дополнительно содержит оценивающее приспособление, соединенное с детектором света, причем приспособление способно определять количество света, детектируемого детектором света для одного события сцинтилляции, причем это количество находится в известном соотношении с энергией, сообщаемой гамма-излучением в гамма-лучевом сцинтилляторе, причем оценивающее приспособление выполнено с возможностью классифицировать детектируемое излучение как нейтроны, когда измеренная полная гамма-энергия Esum выше 2,614 МэВ. Технический результат - повышение точности детектирования нейтронов. 4 н. и 16 з.п. ф-лы, 4 ил.
Наверх