Способ определения скорости движения и дальности объекта

Изобретение относится к области локации и может быть использовано для измерения параметров движения объектов при осуществлении их идентификации и селекции. В способе определения скорости движения и дальности объекта при осуществлении локации, основанном на преобразовании принятого сигнала, перемножении названного сигнала с задержанным опорным сигналом и последующем анализе полученных колебаний, выполняют перемножение принятого сигнала с сигналами, повторяющими опорный сигнал с различными значениями времени задержки, производят частотный анализ колебаний, полученных путем указанного преобразования, по результатам которого определяют время задержки сигнала, при котором амплитудный частотный спектр колебаний имеет наибольший максимум, по значению частоты, соответствующей указанному максимуму, и по времени задержки указанного сигнала определяют искомые скорость движения и дальность объекта. Отличительной особенностью изобретения является, в частности, возможность на основе доплеровского метода реализовать измерение скорости и дальности движущегося объекта. Предлагаемый способ обеспечивает повышение помехоустойчивости при сохранении высокой чувствительности, что и является достигаемым техническим результатом. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области локации и может быть использовано для измерения параметров движения объектов при осуществлении их идентификации и селекции.

Известен способ радиолокационных измерений [1], основанный на излучении зондирующего сигнала и детектировании отраженного от объекта сигнала, по времени запаздывания которого определяют расстояние от локатора, излучающего зондирующий сигнал, до отражающего объекта. По смещению несущей частоты отраженного сигнала относительно частоты зондирующего сигнала, обусловленного эффектом Доплера, определяют радиальную скорость движения объекта. Реализация способа требует выполнения линейных и нелинейных операций над принимаемыми колебаниями, что является зачастую непростой задачей.

Известен также способ измерения параметров движения объекта, в частности, радиальной скорости, при осуществлении радиолокации, основанный на преобразовании принятого сигнала с помощью опорного, частота которого равна частоте излучаемого сигнала [2]. Ввиду разности частот, обусловленной доплеровским сдвигом частоты принимаемого сигнала, полученный после преобразования результирующий сигнал будет представлять доплеровские колебания, которые подаются на спектроанализатор. По измеренному значению доплеровской частоты определяют радиальную скорость объекта. Данный способ позволяет реализовать устройства с высокой чувствительностью, что является его несомненным преимуществом, но при этом не позволяет измерять дальность и направление движения объекта, что является его существенным недостатком.

Прототипом предлагаемого изобретения выбран способ определения параметров движения объекта в процессе радиолокации, в котором поступающие на вход приемника колебания разветвляются по каналам, рассчитанным на отличающиеся между собой значения времени запаздывания и доплеровской частоты [3]. Обработка сигнала осуществляется с помощью многоканальной корреляционной схемы, количество блоков в которой может достигать нескольких сотен.

Недостатком данного способа является сложность его реализации, обусловленная многоканальностью схемы обработки сигнала, как по доплеровским частотам, так и по времени запаздывания.

Другим недостатком указанного способа является необходимость использования стандартных зондирующих сигналов при выполнении жестких требований, предъявляемых к параметрам системы, что снижает помехоустойчивость схемы обработки сигнала.

Задачей изобретения является повышение эффективности методов радиолокации, в частности, за счет обеспечения измерения параметров сигнала посредством единой совокупности операций, и улучшение помехоустойчивости радиотехнических систем.

Указанная задача решается за счет того, что в способе определения скорости движения и дальности объекта при осуществлении локации, основанном на преобразовании принятого сигнала, перемножении названного сигнала с задержанным опорным сигналом и последующем анализе полученных колебаний, выполняют перемножение принятого сигнала с сигналами, повторяющими опорный сигнал с различными значениями времени задержки, производят частотный анализ колебаний, полученных путем указанного преобразования, по результатам которого определяют время задержки сигнала, при котором амплитудный частотный спектр колебаний имеет наибольший максимум, по значению частоты, соответствующей указанному максимуму, и по времени задержки указанного сигнала определяют искомые скорость движения и дальность объекта. Перекрывая при этом исследуемое пространство по дальности, осуществляют смещение опорного сигнала на различное время, получают множество сигналов, выполняют преобразование принимаемого сигнала, используя данные реализации опорного сигнала, и частотный анализ результирующих колебаний или осуществляют сканирование пространства по дальности, выполняют пошаговое смещение опорного сигнала во времени с последующим преобразованием принимаемого сигнала на каждом шаге и частотным анализом результирующих колебаний. В случае необходимости понижения частоты обрабатываемых сигналов опорный и принятый сигналы предварительно преобразуют путем гетеродинирования.

Техническим результатом изобретения является повышение чувствительности, улучшение помехоустойчивости системы локации при более простой структуре схемы обработки сигнала, с помощью которой осуществляют способ.

Сущность изобретения рассматривается на примере определения скорости движения и дальности объекта при осуществлении радиолокации и поясняется чертежом, где представлена упрощенная многоканальная схема обработки сигнала.

Согласно чертежу схема содержит многоотводную линию 1 задержки (ЛЗ), каждый из отводов которой отличается от других заранее известным временем задержки сигнала; каналы обработки, каждый из которых включает перемножитель 2, связанный с соответствующим отводом ЛЗ 1 посредством одного из входов, и спектроанализатор 3, соединенный с выходом названного перемножителя; вычислитель 4, подключенный к спектроанализаторам 3 всех каналов, а также к ЛЗ 1. Кроме того, на чертеже обозначены ur - принятый сигнал, который после предварительного преобразования подается на другие входы перемножителей 2 каждого из каналов; ud - опорный сигнал, который подается на вход ЛЗ 1. Схемы формирования указанных сигналов аналогичны используемым в [2] и на чертеже не показаны.

Обработка принятого сигнала в процессе локации осуществляют следующим образом.

Принятый сигнал ur, который получают, как это показано в [2], в результате излучения зондирующего сигнала и преобразования отраженных от объекта колебаний, подают на один из входов перемножителей 2, на другой вход каждого из названных устройств подают задержанный опорный сигнал с одного из отводов ЛЗ 1, входной сигнал ud для которой получают, как правило, ответвлением незначительной части мощности в процессе генерации зондирующего сигнала. Наличие многоотводной ЛЗ 1 позволяет получать множество сигналов, повторяющих с различным временем задержки опорный сигнал. Значение времени задержки каждого из сигналов, используемых в перемножителях 2 в качестве опорных, можно определить по номеру канала, в котором используется данный сигнал, и параметрам ЛЗ 1. С помощью спектроанализаторов 3 определяют частотный спектр колебаний, полученных в результате перемножения соответствующего опорного и принятого сигналов, в каждом канале. Использование для локации широкополосного сигнала, например шумоподобного, или сигнала, представляющего случайный процесс, обуславливает различие в амплитуде спектральных сигналов на выходе каналов, зависящее от взаимного смещения принятого и опорного сигналов во времени. Максимум амплитудного частотного спектра колебаний будет наблюдаться при отсутствии взаимного смещения упомянутых сигналов во времени. При наличии смещения уровень сигнала на выходе канала будет на уровне шума. По поступлению информации от ЛЗ 1 о факте прохождении опорного сигнала с помощью вычислителя 4 сравнивают сигналы на выходе каналов, определяют номер канала с наибольшим уровнем выходного сигнала (с наибольшим уровнем амплитудного частотного спектра результирующих колебаний). Радиальную скорость объекта определяют с помощью вычислителя 4 согласно [1] по значению частоты колебаний на выходе спектроанализатора данного канала. По номеру этого же канала с помощью вычислителя 4 находят смещение (задержку) опорного сигнала. Время запаздывания принятого сигнала будет равно по длительности найденному времени задержки опорного сигнала. Используя эти данные, в соответствии с [1] вычисляют дальность до объекта. При необходимости понижения частоты принимаемых колебаний производят гетеродинирование опорного и принятого сигналов.

Из сравнения данного способа обработки сигнала с прототипом следует, что количество каналов, а тем более количество блоков в схеме уменьшается многократно.

При реализации способа возможно также использование схемы с последовательным выполнением смещения опорного сигнала с определенным шагом. Последующие перемножение смещенного опорного сигнала с принимаемым, который может быть предварительно записан, и анализ исследуемых колебаний производят на каждом шаге смещения опорного сигнала.

Как показали исследования функции, полученной путем сопоставления значений времени задержки опорного сигнала и максимума частотного спектра колебаний, являющихся результатом перемножения опорного и принятого сигналов, график функции имеет выраженный импульсный характер, что обеспечивает возможность указанных выше вычислений при работе схемы в различных условиях, например, при воздействии шума или помех.

Основанный на спектральном анализе данный способ обработки сигнала аналогичен описанному в [2], что обеспечивает его высокую чувствительность и вместе с тем лучшую помехоустойчивость благодаря возможности выбора в зависимости от условий работы локатора, зондирующего сигнала необходимой структуры. При осуществлении локации движущихся объектов благодаря унитарному подходу к обработке сигналов, по значению параметров которых определяют скорость движения объекта и дальность, способ позволяет повысить достоверность идентификации и улучшить селекцию объектов.

Источники информации

1. Лезин Ю.С. Введение в теорию и технику радиотехнических систем. - М.: Радио и связь, 1986, с.17-20.

2. Белоцерковский Г.Б. Основы радиолокации и радиолокационные устройства. - М.: Сов.радио, 1975, с.84, 85.

3. Теоретические основы радиолокации / Под ред. Я.Д.Ширмана. М.: Сов. радио, 1970, с.329-330 (прототип).

1. Способ определения скорости движения и дальности объекта при осуществлении локации, основанный на преобразовании принятого сигнала, перемножении названного сигнала с задержанным опорным сигналом и последующем анализе полученных колебаний, отличающийся тем, что выполняют перемножение принятого сигнала с сигналами, повторяющими с различными значениями времени задержки опорный сигнал, по результатам частотного анализа колебаний, полученных путем указанного преобразования, определяют время задержки сигнала, при котором амплитудный частотный спектр колебаний имеет наибольший максимум, по значению частоты, соответствующей указанному максимуму, и по времени задержки указанного сигнала определяют искомые скорость движения и дальность объекта.

2. Способ по п.1, отличающийся тем, что опорный и принятый сигналы предварительно преобразуют путем гетеродинирования.

3. Способ по п.1 или 2, отличающийся тем, что, перекрывая исследуемое пространство по дальности, осуществляют смещение опорного сигнала на различное время, получают множество сигналов, выполняют преобразование принимаемого сигнала, используя данные реализации опорного сигнала, и частотный анализ результирующих колебаний.

4. Способ по п.1 или 2, отличающийся тем, что осуществляют сканирование пространства по дальности, выполняют пошаговое смещение опорного сигнала во времени с последующими преобразованием принимаемого сигнала на каждом шаге и частотным анализом результирующих колебаний.



 

Похожие патенты:

Изобретение относится к способам исследования физиологических функций живых организмов, в частности к радиолокационным сверхширокополосным способам диагностики параметров дыхания и сердцебиения пациентов.

Изобретение относится к медицинским диагностическим приборам для исследования физиологических функций живых организмов, в частности к радиолокационным сверхширокополосным средствам диагностики параметров дыхания и сердцебиения пациентов.

Изобретение относится к области радиолокации и предназначено для измерения параметров траекторных нестабильностей в виде радиального ускорения малоразмерного воздушного объекта (ВО) при поимпульсной перестройке несущей частоты по случайному закону.

Изобретение относится к измерительным системам, а именно к средствам радиолокационного наблюдения траекторий баллистических объектов, и может быть использовано при измерении начальной скорости снарядов.

Изобретение относится к способам радиолокационного измерения угла места низколетящей над морем цели в условиях интерференции отраженных сигналов. .

Изобретение относится к радиолокации и сейсмоакустике и может быть использовано для поиска объектов искусственного происхождения в земле. .

Изобретение относится к радиотехнике, в частности к радиолокации, и может быть использовано для обзора передней полусферы (нижней и верхней) в легких маневренных самолетах и вертолетах, имеющих минимум приборного оборудования, а также для предупреждения столкновений с другими летательными аппаратами, высоковольтными линиями электропередач, вышками, трубами и т.д.

Изобретение относится к радиоуправляемым стрелковым устройствам и может быть использовано для наведения снаряда на цель. .

Изобретение относится к области радиотехники и может быть использовано при создании многопозиционных пассивных радиолокационных станций (РЛС). .

Изобретение относится к радиолокации и может быть использовано в радиолокаторах для поиска и слежения за объектами. .

Изобретение относится к радиоизмерительной технике и может быть использовано при исследовании радиолокационных характеристик объекта и получении его радиолокационного изображения при многочастотном импульсном зондировании

Изобретение относится к пассивной радиолокации и может использоваться для измерения мощности шумовых сигналов в широком диапазоне высоких частот

Изобретение относится к радиолокации и может быть использовано для обнаружения, измерения координат, опознавания, сопровождения и распознавания на дальностях до 400 км широкого класса аэродинамических и баллистических объектов

Изобретение относится к метеорологическим радиолокационным станциям

Изобретение относится к измерительным системам, а именно к средствам радиолокационного наблюдения траекторий баллистических объектов, и может быть использовано при измерении начальной скорости снарядов и их нахождения на заданной траектории полета

Изобретение относится к области радиометеорологии и технических средств, применяемых для штормооповещения аэропортов и управления активным воздействием на облака с целью предотвращения града и искусственного увеличения осадков

Изобретение относится к навигационной технике транспортных средств и представляет собой двулучевой доплеровский датчик скорости, выходная информация которого испытывает уменьшенное влияние изменений отражающих свойств поверхности земли

Изобретение относится к навигационной технике и представляет собой трехлучевой доплеровский датчик скорости
Наверх