Смешанные оксидные катализаторы для каталитического окисления олефинов в газовой фазе и способ их приготовления

Изобретение относится к смешанным оксидным катализаторам для каталитического окисления олефинов и метилированных ароматических соединений в газовой фазе, к способу приготовления таких катализаторов и способу получения альдегидов и карбоновых кислот. Описаны смешанные оксидные катализаторы общей формулы I

,

в которой С обозначает железо, D обозначает Р, Е обозначает по меньшей мере один из элементов из группы, включающей Li, К, Na, Rb, Cs, F обозначает Mn, G обозначает по меньшей мере один из элементов из группы, включающей Sm, Gd, La, H обозначает по меньшей мере один из элементов из группы, включающей Si, Al, и

а обозначает число от 0 до 5,0,

b обозначает число от 0,5 до 5,0,

с обозначает число от 2 до 15,

d обозначает число от 0,01 до 5,0,

е обозначает число от 0,001 до 2,

f обозначает число от 0,001 до 5,

g обозначает число от 0 до 1,5,

h обозначает число от 0 до 800, а

х обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода. Описан способ приготовления катализаторов формулы I, в котором смешивают растворы соединений содержащихся в смешанных оксидных катализаторах формулы I металлов, получают соосадки, полученное твердое вещество выделяют, сушат, прокаливают и при необходимости подвергают переработке для придания катализатору требуемой формы. Описан также способ получения альдегидов и кислот путем окисления олефинов или метилированных ароматических соединеий воздухом либо кислородом в присутствии инертных газов, водяного пара или отходящих газов реакции при повышенных температурах с использованием описанного выше катализатора общей формулы I. Технический эффект - повышение активности и селективности катализатора. 3 н. и 22 з.п. ф-лы.

 

Настоящее изобретение относится к смешанным оксидным катализаторам (т.е. катализаторам на основе смешанных оксидов) для каталитического окисления олефинов или метилированных ароматических соединений в газовой фазе, к способу приготовления таких катализаторов и к способу получения альдегидов и карбоновых кислот взаимодействием олефинов или метилированных ароматических соединений с воздухом или кислородом в присутствии инертных газов при различных количественных соотношениях, при повышенной температуре и при повышенном давлении.

Катализатор указанного типа можно использовать прежде всего в высокоэкзотермической реакции по превращению пропена в акролеин и акриловую кислоту или изобутена в метакролеин и метакриловую кислоту. В результате высокоэкзотермической реакции, при которой олефин подвергают взаимодействию на гетерогенных катализаторах с кислородсодержащим газом, наряду с требуемыми продуктами - акролеином и акриловой кислотой - образуется и целый ряд нежелательных побочных продуктов, таких, например, как CO2, СО, уксусный альдегид или уксусная кислота.

Известно, что химический состав смешанного оксида (фазообразование и образование центров реакции), равно как и особенности его физической структуры (например, пористость, размер поверхности, форма катализатора и иные параметры), могут существенно влиять на эффективность отвода тепла от катализатора, на его способность образовывать целевой продукт (селективность) и производительность (выход с единицы объема в единицу времени). В реакции окисления олефинов в качестве катализатора, как правило, используют смешанные оксиды, которые по своему химическому составу и физическому строению обладают сложной структурой. В целом ряде публикаций описаны смешанные оксиды, способные служить катализаторами в реакциях по получению акролеина и акриловой кислоты из пропена. Такие катализаторы состоят обычно из молибдена, ванадия и/или вольфрама. К этим основным компонентам подобных катализаторов принято добавлять по меньшей мере один из элементов из группы, включающей висмут, сурьму, ванадий, теллур, олово, железо, кобальт, никель и медь.

За время, прошедшее с момента разработки компанией Standard Oil Inc. первого способа получения акролеина и акриловой кислоты путем окисления олефинов в газовой фазе при гетерогенном катализе (GB 821999, 1958), появилось множество публикаций по этой тематике. Однако несмотря на продолжавшуюся в течение длительного времени работу по совершенствованию этого процесса задача повышения производительности катализатора и, в частности, повышения выхода целевого продута и увеличения активности и долговечности самого катализатора все еще остается актуальной. Для решения этой задачи в литературе предлагаются самые разнообразные подходы к приготовлению катализаторов, а также самые разнообразные их составы. В качестве примера при этом можно назвать следующие новейшие разработки в этой области.

В US 2005159621 описан катализатор, основными элементами которого являются Мо, Bi, Fe и Cs. Наряду с ними в состав такого катализатора требуется также включать, как это проиллюстрировано на примерах по превращению изобутена в метакролеин, соответственно пропена в акролеин, высокотоксичную сурьму.

В WO 2005/035115 описан катализатор, способ приготовления которого предусматривает выполнение следующих стадий: приготовление суспензии, содержащей металлические компоненты, сушка суспензии, измельчение высушенного материала, его смешение с сублимируемым для образования пор веществом, прежде всего с мочевиной, которое затем удаляют при прокаливании. Однако удаление органических добавок при прокаливании связано с опасностью взрыва, а контролируемое удаление органических веществ часто не удается реализовать даже при разбавлении инертными газами. Поэтому возможность реализации подобного способа в промышленном масштабе вызывает серьезные сомнения.

В DE 10353954 описано применение катализаторов типа Mo12WbCocFedBieSifKgOx в виде сплошных катализаторов кольцевой формы, предназначенных для снижения максимальной температуры нагрева катализатора при высокой нагрузке на него по пропену и для увеличения тем самым селективности катализатора по отношению к целевому продукту. При этом согласно указанной публикации при однократном прохождении реакционной газовой смеси через слой катализатора степень превращения пропена должна составлять не менее 90 мол.%, а количество образующегося при этом акролеина должно тем самым составлять не менее 80 мол.%. В представленных в этой публикации примерах максимальный выход продукта достигает 83,8%.

В WO 2005/063673 описан, например, способ разбавления катализатора инертным материалом с целью снизить таким путем выделение тепла в реакционной зоне и повысить тем самым выход целевого продукта, поскольку предотвращение перегрева катализатора до слишком высокой температуры позволяет ограничить полное окисление продуктов. Несмотря на подобное изменение температурного режима реакции за счет использования инертных материалов суммарный выход акролеина и акриловой кислоты при их получении описанным в указанной публикации способом достигает лишь 91,22%. Более целесообразным, однако, представляется непосредственное повышение производительности катализатора. Это позволило бы избежать необходимости в связанном с высокими затратами времени и средств заполнении инертным материалом множества зон реактора.

Задача изобретения и его отличия от уровня техники

Общепризнано, что производительность катализатора в существенной мере зависит от высокоспецифичных локальных электронных структур каталитически активного материала. Формирование таких структур происходит уже на стадиях приготовления предшественников катализаторов и определяется особенностями проведения этих стадий. Так, например, незначительное изменение даже одного параметра процесса приготовления катализатора (концентрации, температуры и т.д.) может привести к повышению или же, наоборот, к снижению активности и селективности катализатора.

В основу настоящего изобретения была положена задача повысить активность и селективность катализатора по сравнению с уровнем техники.

Задача изобретения состояла также в разработке усовершенствованного способа получения альдегидов и кислот, заключающегося в получении акролеина и акриловой кислоты из пропена путем его окисления воздухом или кислородом в присутствии инертных газов, под которыми помимо прочего подразумеваются водяной пар или отходящие газы реакции, при повышенных температурах и в присутствии гетерогенного смешанного оксидного катализатора. Для этих целей необходимо было предложить смешанный оксидный катализатор, который наряду с обеспечением высокой степени превращения пропена, превышающей 95%, обладал бы также высокой степенью селективности по отношению к целевому продукту, составляющей не менее 88%, и благодаря этому позволял бы существенно повысить экономическую эффективность подобного способа в целом.

Процесс превращения олефина в продукты его окисления - альдегид и кислоту - проводят при повышенных температурах и при соотношении между олефином, воздухом и инертным(-и) газом(-ами), составляющем предпочтительно 1:6-9:3-18.

В качестве инертных газов согласно изобретению можно использовать все те газообразные соединения, которые остаются инертными (химически неактивными) в описанных выше условиях окисления. В качестве примера таких инертных газов можно назвать азот, гелий, этан, пропан, водяной пар и их смеси. Равным образом в качестве инертного газа в реактор можно вновь подавать и выходящий из него отходящий газ в качестве "рециркулируемого" или "оборотного" газа. Водяной пар может представлять собой таковой, образующийся в ходе реакции или отдельно добавляемый водяной пар из другого источника.

Объектом изобретения являются смешанные оксидные катализаторы общей формулы

,

в которой

С обозначает железо,

D обозначает по меньшей мере один из элементов из группы, включающей W и Р,

Е обозначает по меньшей мере один из элементов из группы, включающей Li, K, Na, Rb, Cs, Mg, Ca, Ba и Sr,

F обозначает по меньшей мере один из элементов из группы, включающей Се, Mn, Cr и V,

G обозначает по меньшей мере один из элементов из группы, включающей Nb, Se, Те, Sm, Gd, La, Y, Pd, Pt, Ru, Ag и Au,

H обозначает по меньшей мере один из элементов из группы, включающей Si, Al, Ti и Zr, и

а обозначает число от 0 до 5,0,

b обозначает число от 0,5 до 5,0,

с обозначает число от 2 до 15,

d обозначает число от 0,01 до 5,0,

е обозначает число от 0,001 до 2,

f обозначает число от 0,001 до 5,

g обозначает число от 0 до 1,5,

h обозначает число от 0 до 800, а

х обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.

Применение предлагаемых в изобретении катализаторов позволяет заметно повысить селективность по отношению к целевым продуктам, доведя ее до значений не менее 88%, при высокой степени превращения пропена, составляющей не менее 95%.

Предлагаемый в изобретении новый способ приготовления катализаторов общей формулы I позволяет получать катализатор в виде каталитически активного твердого тела, наиболее пригодного, например, для использования в реакции по превращению пропена в акролеин и акриловую кислоту. Указанную реакцию наиболее предпочтительно проводить в реакторах, позволяющих использовать в них катализатор в виде неподвижного слоя. Вместе с тем катализатор можно использовать и в нанесенном на ограничивающую реакционное пространство стенку виде. Следует также отметить, что катализаторы общей формулы I можно применять и в реакциях по превращению изобутена в метакролеин и метакриловую кислоту. Предлагаемые в изобретении катализаторы равным образом можно использовать в реакциях по превращению толуола в бензальдегид и бензойную кислоту.

Предлагаемые в изобретении катализаторы можно приготавливать в виде высокодисперсного порошка путем выполнения следующих стадий: растворение солей металлов, осаждение активных компонентов, сушка и прокаливание. Высушенный или прокаленный порошок рекомендуется подвергать размолу. Прокаленный порошок можно подвергать дальнейшей переработке для придания катализатору требуемой формы. В этих целях можно использовать такие методы, как таблетирование, экструзия или нанесение на носитель. На тип и геометрическую форму носителя не накладывается никаких ограничений. Так, например, носитель может иметь форму пирамиды, цилиндра или шара. Однако носителем может служить и стенка самого реактора. Особенно предпочтительны при этом экструзия и нанесение на круглый носитель. В этом случае катализатор можно использовать в виде неподвижного слоя для контакта с ним реакционной среды. В качестве материала-носителя можно использовать сплав металлов, сталь широко распространенных марок, термостойкую пластмассу, керамику или керамическое сырье. При необходимости придания катализатору определенной формы прокаливание целесообразно прерывать при температуре в интервале от 420 до 490°С, затем придавать катализатору необходимую форму и после этого возобновлять прокаливание при температуре в интервале от 490 до 600°С. Приготовленный таким путем катализатор обладает исключительно высокой активностью, селективностью и долговечностью и обеспечивает очень высокий выход продукта.

Катализаторы, используемые в реакциях окисления в газовой фазе описанным выше способом, приготавливают путем объединения между собой растворенных соединений, содержащих в требуемых концентрациях каталитически активные элементы, входящие в состав катализатора приведенной выше общей формулы I. Подобные компоненты наиболее предпочтительно использовать индивидуально или совместно в виде соединений, выбранных из группы аммониевых или аминосоединений, оксалатов, карбонатов, фосфатов, ацетатов, карбонилов и/или нитратов. Особенно предпочтительны при этом карбонаты, нитраты и фосфаты либо их смеси между собой. Равным образом можно использовать и образующие указанные соли кислоты, например азотную, фосфорную или угольную кислоту.

Первая стадия приготовления предлагаемого в изобретении катализатора заключается, как уже указывалось выше, в осаждении активных компонентов. При создании изобретения было установлено, что концентрация противоионов металлов в процессе осаждения и их молярные соотношения имеют важное значение для производительности катализатора окисления.

Обладающие особо высокой активностью и селективностью катализаторы общей формулы I получают в тех случаях, когда молярное соотношение противоионов может быть представлено следующим образом:

R1=[NH4+]/[NO3-]=1:10-1:1 и/или

R2=[NO3-]/([NO3-]+[СО32-]+РО43-+[Y-COO-])=0,5-1,0,

при этом Y может обозначать любой остаток, прежде всего метил или этил, а концентрация одного или нескольких ионов, за исключением NO3- и NH4+, может также равняться нулю.

В зависимости от типа солей металлов, используемых при осаждении, может потребоваться добавлять к смеси, в которой происходит осаждение, соли, кислоты или их растворы для установки соотношения ионов R1 и/или R2 на предпочтительное значение. В оптимальном варианте для этого используют аммиак или соли аммония, например карбонат аммония и гептамолибдат аммония, или нитраты металлов, например нитрат железа, нитрат кобальта, однако для регулирования соотношения ионов можно также использовать в необходимых количествах соответствующие кислоты, например азотную кислоту. Значение рН в процессе осаждения составляет менее 8, прежде всего менее 7.

Не менее важное значение имеет и температура раствора, в котором происходит осаждение. Так, в частности, при слишком высокой температуре активность катализатора может заметно снизиться. В принципе же осаждение можно проводить при температуре в интервале от 5 до 90°С. Однако при создании изобретения было установлено, что катализатор, предшественник которого осажден при температуре в интервале от 20 до 50°С, обладал гораздо более высокой активностью.

Соосадок (сопреципитат) можно получать на одной стадии осаждения. Особенно предпочтительно проводить осаждение в несколько стадий с дискретным добавлением отдельных компонентов либо их смесей. Количество стадий осаждения в принципе не ограничено. Предпочтительно, однако, проводить осаждение в одну-три стадии.

Полученную суспензию можно непосредственно подвергать последующей переработке или же ее можно выдерживать для созревания в течение периода времени от более 0 до 24 ч, предпочтительно от более 0 до 12 ч, особенно предпочтительно от более 0 до 6 ч. Очевидно, что образовавшуюся в процессе осаждения суспензию до ее последующей переработки следует гомогенизировать, например, путем перемешивания.

По завершении периода созревания жидкую фазу суспензии можно удалять выпариванием, центрифугированием или фильтрацией. Возможно также одновременно с выпариванием жидкой фазы суспензии подвергать содержащееся в ней твердое вещество (твердую фазу) сушке, например распылительной сушке. Жидкую фазу суспензии следует выпаривать при температуре в интервале от 80 до 130°С. Для сушки твердого вещества можно использовать воздух, кислородсодержащие инертные газы или иные инертные газы, например азот. При проведении сушки в печи температура в ней должна лежать в пределах от 100 до 200°С. В распылительной сушилке начальная температура сушильной среды должна лежать в пределах от 200 до 500°С, а температура при отделении высушенного порошка должна составлять от 80 до 200°С. Размер полученных зерен предпочтительно должен составлять от 15 до 160 мкм при их среднем диаметре в пределах от 15 до 80 мкм.

Высушенный порошок можно в принципе прокаливать в печах самых разных типов, таких, например, как печь с циркуляцией воздуха, вращающаяся трубчатая печь, решетчатая печь, шахтная печь или ленточная (конвейерная) печь. Качество регулирования, соответственно качество контроля температуры в печи, должно быть максимально высоким. Продолжительность пребывания порошка в печи должна в зависимости от ее типа составлять от 0,25 до 13 ч.

Прокаливание и происходящее при этом термическое разложение солей можно также проводить в одну либо несколько стадий. Этот процесс можно проводить при температуре в интервале от 200 до 600°С, прежде всего от 300 до 600°С. Термическое разложение можно проводить при добавлении инертного газа или смесей кислорода с инертным газом. В качестве инертного газа при этом можно использовать, например, азот, гелий, водяной пар или смеси этих газов.

При создании изобретения было установлено, что после распылительной сушки или прокаливания порошок для повышения активности катализатора предпочтительно подвергать измельчению. Такому измельчению, например, путем размола порошок можно подвергать в сухом состоянии или же в виде его водной суспензии. Предпочтительно, однако, подвергать порошок измельчению после его прокаливания, соответственно при многостадийном прокаливании - в промежутках между отдельными стадиями прокаливания. Полученный таким путем порошок можно непосредственно использовать в качестве катализатора. При этом средний размер частиц порошка должен составлять от 0,01 до 50 мкм. В особенно предпочтительном варианте средний размер частиц порошка должен составлять от 0,1 до 30 мкм. Для промышленного применения порошок наиболее целесообразно после добавления к нему имеющихся в продаже формовочных средств и связующих подвергать переработке для придания катализатору необходимой формы. Подобная переработка порошка может заключаться в его таблетировании, экструзии или нанесении из него покрытия на носитель. На геометрическую форму носителя не накладывается никаких ограничений. Более того, ее выбор определяется особенностями реактора (например, диаметром трубы, длиной насыпного слоя катализатора). Так, например, носитель может иметь форму пирамиды, форму цилиндра, седловидную форму, форму шара или многогранную форму, или же носителем может также служить стенка, ограничивающая реакционное пространство.

В качестве связующих могут использоваться различные масла, целлюлозы, поливиниловые спирты, сахариды, акрилаты, а также алкильные производные, их смеси или продукты их конденсации. Предпочтительны среди указанных связующих акрилаты, поливиниловые спирты и целлюлозы. К наиболее предпочтительным связующим относятся производные и продукты конденсации акрилатов и/или целлюлоз, а также их смеси.

При переработке каталитического порошка для придания катализатору необходимой формы катализатор предпочтительно подвергать дополнительной термообработке путем его выдержки при температуре в интервале от 490 до 600°С, что обеспечивает упрочнение или затвердевание активной массы для возможности ее применения в промышленных реакторах.

Объектом настоящего изобретения является также способ окисления олефинов в присутствии предлагаемых в изобретении катализаторов с образованием ненасыщенных альдегидов и соответствующих кислот.

Реакцию по получению акролеина и акриловой кислоты обычно проводят при температуре в интервале от 250 до 450°С и при абсолютном давлении в пределах от 1,0 до 2,2 бар. При этом реагенты олефин, воздух и инертные газы предпочтительно подавать в слой насыпного катализатора при соотношении между ними 1:6-9:3-18 из расчета 2-10 моль олефина на дм3 объема насыпного катализатора в час.

При получении акролеина и акриловой кислоты пропен используют прежде всего в химически чистом виде или с чистотой для полимеризации, однако его можно также использовать с чистотой после нефтепереработки. Вместо инертного газа можно использовать отходящие газы реакции после предварительного удаления из них способных к конденсации компонентов. Особенно хороших результатов удается достичь при использовании кожухотрубных реакторов, реакторов с пластинчатыми теплообменниками (см., например, ЕР 0995491, ЕР 1147807) или реакторов с нанесенным на их внутреннюю стенку катализатором (см., например, Redlingshoefer H., Fischer A. и др., Ind. Eng. Chem. Res. 42, 2003, с.5482-5488, ЕР 1234612).

Внутренний диаметр реакционных труб, соответственно расстояние между пластинчатыми теплообменниками, должен составлять от 18 до 28 мм, предпочтительно от 20 до 26 мм, а толщина стенок из стали должна составлять от 1 до 3,5 мм. Типичная длина реактора составляет от 3,00 до 4,00 м. Катализатор предпочтительно распределять равномерно по всей длине реактора без разбавления предназначенными для этой цели формованными изделиями, однако на практике, как очевидно, может возникнуть необходимость в разбавлении насыпного катализатора, например, добавлением в него инертных формованных изделий.

Предлагаемые в изобретении катализаторы даже при высокой удельной нагрузке на них при их применении в описанных выше процессах окисления обладают повышенной активностью и селективностью.

Ниже изобретение более подробно поясняется на примерах его осуществления. При этом выход (%) продукта вычисляют по следующей формуле:

(количество образовавшегося продукта в моль/ч)/(количество поданного реагента в моль/ч)×100;

степень превращения (%) олефина вычисляют по следующей формуле:

[1 - (количество выходящего из реакционной трубы олефина в моль/ч)/(количество поступающего в реакционную трубу олефина в моль/ч)]×100;

селективность (%) вычисляют по следующей формуле:

(выход продукта)/(степень превращения олефина)×100.

Ниже изобретение для пояснения его сущности проиллюстрировано на приведенных в последующем описании примерах, которые, однако, не ограничивают его объем.

Примеры

Пример 1

Сначала приготавливали раствор I, для чего нитраты железа, кобальта, никеля, марганца и калия при массовом соотношении между ними 23,2:47,26:29,28:0,0646:0,2067 растворяли в 3,5 л воды, затем нагревали при перемешивании до 40°С и в завершение добавляли раствор 0,1 моль Sm3+ и 2 моль HNO3 в азотной кислоте.

Для получения раствора II при 40°С приготавливали раствор 2118,6 г гептамолибдата аммония в 2,7 л воды и в этот раствор добавляли 4,4 г фосфорной кислоты, а также 0,42 г продукта Aerosil 200 (фирмы Degussa) и 14 г оксида алюминия в 1 л воды.

Раствор II медленно и при интенсивном перемешивании добавляли к раствору I. В отдельном сосуде приготавливали раствор III из 790 г нитрата висмута и 0,72 моль HNO3. В результате добавления этого раствора к другим активным компонентам получили соосадок, предназначенный для образования активной фазы катализатора.

Этот соосадок интенсивно перемешивали в течение 12 ч. Полученную таким путем суспензию сушили в распылительной сушилке с вращающимся диском при температуре сушильного газа на входе 350°С. Сушильный воздух (газ) подавали с таким расходом, чтобы его температура на выходе составляла 110±10°С.

Средний диаметр частиц полученного таким путем порошка составлял 55 мкм. Этот порошок подвергали затем термообработке в печи с циркуляцией воздуха при температуре 445°С в течение 1 ч до образования в результате смешанного оксида, который на следующей стадии размалывали до частиц со средним диаметром 1 мкм. Этот смешанный оксид затем в виде его водной суспензии распылением через двухкомпонентную форсунку наносили на керамический шаровидный носитель и затем сушили в токе воздуха при 60°С. Для гомогенизации пеллетов их обрабатывали во вращающемся барабане. Для упрочнения нанесенной активной массы полученный продукт в течение 1 ч выдерживали при температуре 540°С.

Полученный таким путем катализатор имел следующий состав:

(Mo12Bi1,5(Co+Ni)8,0Fe1,8Mn0,01K0,06P0,04Al275Si0,66Sm0,1)Ox.

Пример 2а

Через катализатор из примера 1 пропускали смесь из пропена (химически чистого) в количестве 7,5 об.%, воздуха в количестве 58 об.% и инертного газа (в количестве, недостающем до 100 об.%). Общий расход газового потока составлял 36,9 л/мин. Температура теплоносителя составляла 340°С. Степень превращения пропена составила 94 мол.%, а селективность по отношению к полученным акролеину и акриловой кислоте составила при этом 96%.

Пример 2б

Через катализатор из примера 1 пропускали смесь из пропена (химически чистого) в количестве 7,8 об.%, кислорода в количестве 12,1 об.%, воды в количестве 3,9 об.% и азота. Общий расход газового потока составлял 27,5 л/мин. Температура теплоносителя составляла 334°С. При этом образовывались нежелательные побочные продукты, селективность по отношению к которым составила 4%.

Пример 2в

Через катализатор из примера 1 пропускали смесь из пропена (химически чистого) в количестве 4,6 об.%, воздуха в количестве 47 об.% и инертного газа в количестве 47 об.%. Общий расход газового потока составлял 1100 л/ч. Температуру теплоносителя устанавливали при этом на значение, при котором степень превращения пропена достигала 93 мол.%, а выход акролеина составлял при этом 88%.

Пример 2г

Через катализатор из примера 1 пропускали смесь из пропена (химически чистого) в количестве 5,8 об.%, воздуха в количестве 51 об.% и инертного газа в количестве 46 об.%. Общий расход газового потока составлял 20 л/мин. Температуру теплоносителя устанавливали при этом на значение, при котором степень превращения пропена достигала 92 мол.%, а селективность по отношению к акролеину составляла при этом 92%.

Пример 2д

Через катализатор из примера 1 пропускали смесь из пропена (химически чистого) в количестве 6,2 об.%, воздуха в количестве 55 об.% и азота. Общий расход газового потока составлял 22,2 л/мин. Температура теплоносителя составляла 327°С. Степень превращения пропена составила 96 мол.%, а селективность по отношению к полученному акролеину составила при этом 91%.

Пример 3

Прокаленный смешанный оксид получали аналогично примеру 1. 1,6 кг этого порошкообразного смешанного оксида смешивали с 0,4 кг пентаэритрита (тончайшего помола). К этой смеси добавляли 6%-ный раствор метилцеллюлозы и месили до образования гомогенной пластичной массы, которую экструдировали при постоянном давлении в виде пеллетов диаметром 3 мм и длиной 5 мм, которые затем сушили при 10°С.

Этот экструдат упрочняли путем его термообработки во вращающейся трубчатой печи. С этой целью скорость подачи и частоту вращения взаимно согласовывали с таким расчетом, чтобы продолжительность пребывания экструдата в печи составляла 20 мин. Максимальная (пиковая) температура в печи составляла 580°С.

Пример 4

Через катализатор из примера 3 пропускали смесь из пропена (химически чистого) в количестве 7,3 об.%, воздуха в количестве 57 об.% и инертного газа. При температуре бани 308°С, при продолжительности контакта (взаимодействия) 2,9 с и при степени превращения пропена, равной 90%, получали акролеин и акриловую кислоту, селективность по отношению к которым составила 94%.

Пример 5

Сначала приготавливали раствор I, для чего нитраты железа, кобальта, никеля, марганца и калия при массовом соотношении между ними 37,16:31,24:31,22:0,06133:0,3095 растворяли в 3,5 л воды, затем нагревали при перемешивании до 40°С и в завершение добавляли раствор 0,1 моль Sm3+ и 2 моль HNO3 в азотной кислоте.

Для получения раствора II при 40°С приготавливали раствор 2119 г гептамолибдата аммония в 2,7 л воды и затем к этому раствору добавляли 4,4 г фосфорной кислоты, а также 0,4 г продукта Aerosil 200 (фирмы Degussa) и 14 г оксида алюминия в 1 л воды.

Раствор II медленно и при интенсивном перемешивании добавляли к раствору I. В отдельном сосуде приготавливали раствор из 776 г нитрата висмута и 0,72 моль HNO3. В результате добавления этого раствора к другим активным компонентам получили соосадок.

Этот соосадок интенсивно перемешивали в течение 12 ч. Полученную таким путем суспензию сушили в распылительной сушилке с вращающимся диском при температуре сушильного газа на входе 350°С. Сушильный воздух (газ) подавали с таким расходом, чтобы его температура на выходе составляла 110±10°С.

Средний диаметр частиц полученного таким путем порошка составлял 55 мкм. Этот порошок подвергали затем термообработке в печи с циркуляцией воздуха при температуре 445°С в течение 1 ч до образования в результате смешанного оксида.

Этот смешанный оксид затем в виде его водной суспензии распылением через двухкомпонентную форсунку наносили на керамический шаровидный носитель и затем сушили в непрерывном токе воздуха. Для гомогенизации пеллетов их обрабатывали во вращающемся барабане. Для упрочнения нанесенной активной массы полученный продукт в течение 2 ч выдерживали при температуре 540°С.

Полученный таким путем катализатор имел следующий состав:

(Mo12Bi1,6Co3,4Fe2,9Ni3,4Mn0,01K0,1P0,04Al275Si9,35Sm0,1)Ox.

Пример 6

Через катализатор из примера 5 пропускали смесь из пропена (химически чистого) в количестве 7,3 об.%, воздуха в количестве 57 об.% и инертного газа. При температуре бани 350°С, при продолжительности контакта (взаимодействия) 2,7 с и при степени превращения пропена, равной 93%, получали акролеин и акриловую кислоту, селективность по отношению к которым составила 96%.

Пример 7

Сначала приготавливали раствор I, для чего нитраты железа, кобальта, никеля, марганца и калия в массовом соотношении между ними 23,2:47,26:29,28:0,0646:0,2067 растворяли в 3,5 л воды, затем нагревали при перемешивании до 40°С и в завершение добавляли раствор 0,1 моль Sm3+ и 2 моль HNO3 в азотной кислоте.

Для получения раствора II при 40°С приготавливали раствор 2118,6 г гептамолибдата аммония в 2,7 л воды и затем к этому раствору добавляли 4,4 г фосфорной кислоты.

Раствор II медленно и при интенсивном перемешивании добавляли к раствору I. В отдельном сосуде приготавливали раствор III из 790 г нитрата висмута и 0,72 моль HNO3. В результате добавления этого раствора к другим активным компонентам получили соосадок, предназначенный для образования активной фазы катализатора.

Этот соосадок интенсивно перемешивали в течение 12 ч. Полученную таким путем суспензию сушили в распылительной сушилке с вращающимся диском при температуре сушильного газа на входе 350°С. Сушильный воздух (газ) подавали с таким расходом, чтобы его температура на выходе составляла 110±10°С.

Средний диаметр частиц полученного таким путем порошка составлял 55 мкм. Этот порошок подвергали затем термообработке в печи с циркуляцией воздуха при температуре 445°С в течение 1 ч до образования в результате смешанного оксида.

Этот смешанный оксид затем в виде его водной суспензии со средним размером частиц ее твердой фазы (показатель D50), равным 1 мкм, распылением через двухкомпонентную форсунку наносили на керамический шаровидный носитель и затем сушили в постоянном токе воздуха. Для гомогенизации пеллетов их обрабатывали во вращающемся барабане. Для упрочнения нанесенной активной массы полученный продукт в течение 2 ч выдерживали при температуре 540°С.

Полученный таким путем катализатор имел следующий состав:

(Mo12Bi1,5(Co+Ni)8,0Fe1,7Mn0,01K0,06P0,04Sm0,1)Ox.

Пример 8

Через катализатор из примера 5 пропускали смесь из пропена (химически чистого) в количестве 7,3 об.%, воздуха в количестве 57 об.% и инертного газа. При температуре бани 333°С, при продолжительности контакта (взаимодействия) 2,57 с и при степени превращения пропена, равной 92%, получали акролеин и акриловую кислоту, селективность по отношению к которым составила 89%.

Пример 9

Описанную в примере 1 процедуру приготовления катализатора изменяли таким образом, чтобы получить катализатор следующего состава:

(Mo12Bi1,6(Co+Ni)8,12Fe1,8Mn0,008K0,06P0,004Al275Si0,65Sm0,1)Ox.

Пример 10

Через катализатор из примера 9 пропускали смесь из пропена (химически чистого) в количестве 3 об.%, воздуха в количестве 43 об.%, воды в количестве 5,2 об.% и инертного газа. Общий расход газового потока составлял 16 л/мин. Температуру теплоносителя устанавливали при этом на значение, при котором степень превращения пропена достигала 97 мол.%, а выход акролеина составил при этом 87%.

Сравнительный пример 1

В данном примере катализатор приготавливали аналогично примеру 1, но при температуре раствора 80°С.

Через приготовленный таким путем катализатор пропускали смесь из пропена (химически чистого) в количестве 7,5 об.%, воздуха в количестве 58 об.% и инертных газов. Максимально возможный общий расход газового потока составлял лишь 28,2 л/мин. Хотя температура теплоносителя при этом на 15°С превышала его же температуру в примере 2а, тем не менее достигнутая степень превращения пропена составила только 91%, а выход акролеина составил лишь 82%. Отсюда следует, что катализатор обладал значительно меньшей активностью.

Сравнительный пример 2

Для достижения с использованием катализатора из сравнительного примера 1 степени превращения пропена, равной 97%, общий расход газового потока потребовалось снизить до 18,9 л/ч, а объемную долю пропена (химически чистого) уменьшить до 4,5 об.%. Однако и в этом случае активность катализатора была гораздо ниже.

Сравнительный пример 3

В данном примере катализатор приготавливали аналогично сравнительному примеру 1. Однако в отличие от этого примера к раствору II добавляли сначала раствор III, а затем раствор I. При использовании такого катализатора степень превращения пропена достигала 96% при максимальной селективности по отношению к акролеину 85% (селективность по отношению к акролеину и акриловой кислоте составила 88%).

Приготовленный в соответствии с этим примером катализатор, следовательно, также обладал гораздо меньшей активностью.

Сравнительный пример 4

В данном примере катализатор приготавливали аналогично примеру 1, но в отличие от него средний размер частиц твердой фазы наносимой на носитель суспензии составлял 25 мкм.

Испытания такого катализатора проводили в условиях, аналогичных примеру 2а. При этом температуру бани потребовалось повысить на 15°С, однако достигнутая при этом степень превращения пропена составила только 88 мол.%. Таким образом, и в рассматриваемом случае активность катализатора была гораздо ниже.

1. Смешанные оксидные катализаторы для получения альдегидов и кислот общей формулы I

в которой С обозначает железо,
D обозначает Р,
Е обозначает по меньшей мере один из элементов из группы, включающей Li, K, Na, Rb, Cs,
F обозначает Mn,
G обозначает по меньшей мере один из элементов из группы, включающей Sm, Gd, La,
Н обозначает по меньшей мере один из элементов из группы, включающей Si, Al, и
а обозначает число от 0 до 5,0,
b обозначает число от 0,5 до 5,0,
с обозначает число от 2 до 15,
d обозначает число от 0,01 до 5,0,
е обозначает число от 0,001 до 2,
f обозначает число от 0,001 до 5,
g обозначает число от 0 до 1,5,
h обозначает число от 0 до 800, а
х обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.

2. Катализаторы по п.1, отличающиеся тем, что смешанные оксиды нанесены на носители.

3. Способ приготовления смешанных оксидных катализаторов формулы I, отличающийся тем, что смешивают растворы соединений содержащихся в смешанных оксидных катализаторах формулы I металлов, получают соосадки (сопреципитаты), полученное твердое вещество выделяют, сушат, прокаливают и при необходимости подвергают переработке для придания катализатору требуемой формы.

4. Способ по п.3, отличающийся тем, что значение рН в процессе осаждения твердых(-ого) веществ(-а) составляет менее 8.

5. Способ по п.3 или 4, отличающийся тем, что соединения металлов, выбранные из группы аммониевых или аминосоединений, оксалатов, карбонатов, фосфатов, ацетатов, карбонилов и/или нитратов, используют индивидуально или совместно.

6. Способ по п.3 или 4, отличающийся тем, что используют карбонаты, нитраты или фосфаты либо смеси этих солей.

7. Способ по п.5, отличающийся тем, что при необходимости используют кислоты, соответствующие анионам применяемых солей.

8. Способ по пп.3, 4 или 7, отличающийся тем, что для получения соосадка (сопреципитата) используют аммиак или соли аммония, прежде всего карбонат аммония, гептамолибдат аммония, или нитраты металлов, прежде всего нитрат железа, нитрат кобальта, и/или соответствующие кислоты, например азотную кислоту.

9. Способ по пп.3, 4 или 7, отличающийся тем, что осаждение проводят при температуре от 5 до 90°С.

10. Способ по п.8, отличающийся тем, что осаждение проводят при температуре от 5 до 90°С.

11. Способ по п.10, отличающийся тем, что осаждение проводят при температуре от 20 до 50°С.

12. Способ по пп.3, 4, 7 или 10, отличающийся тем, что полученную в результате осаждения суспензию выдерживают для созревания в течение периода времени от более 0 до 24 ч, предпочтительно от более 0 до 12 ч, особенно предпочтительно от более 0 до 6 ч.

13. Способ по пп.3, 4, 7 или 10, отличающийся тем, что высушенный порошок перед его прокаливанием представляет собой высушенный путем распылительной сушки материал с размером частиц от 15 до 160 мкм.

14. Способ по п.13, отличающийся тем, что средний размер частиц высушенного соосадка (сопреципитата) составляет от 15 до 80 мкм.

15. Способ по пп.3, 4 или 14, отличающийся тем, что продолжительность пребывания высушенного порошка в печи для прокаливания составляет от 0,25 до 13 ч при температуре от 200 до 600°С.

16. Способ по пп.3, 4 или 14, отличающийся тем, что прокаливание проводят в одну либо несколько стадий.

17. Способ по п.15, отличающийся тем, что прокаливание проводят при добавлении инертного газа или смесей кислорода с инертным газом в присутствии или в отсутствие водяного пара.

18. Способ по п.15 или 17, отличающийся тем, что прокаленный порошок подвергают переработке путем таблетирования, экструзии или нанесения на носитель.

19. Способ по п.15 или 17, отличающийся тем, что размер частиц прокаленного или частично прокаленного порошка, при необходимости подвергнутого размолу, составляет от 0,01 до 80 мкм.

20. Способ по п.14, отличающийся тем, что размер частиц высушенного путем распылительной сушки порошка, при необходимости подвергнутого размолу, составляет от 0,1 до 50 мкм.

21. Способ по п.3 или 17, отличающийся тем, что средний размер частиц прокаленного или частично прокаленного порошка, при необходимости путем его размола, возможно довести до значений в пределах от 0,01 до 30 мкм.

22. Способ по п.18, отличающийся тем, что после переработки каталитического порошка по приданию ему требуемой формы его подвергают термообработке при температуре от 450 до 600°С.

23. Способ получения альдегидов и кислот путем окисления олефинов или метилированных ароматических соединений воздухом либо кислородом в присутствии инертных газов, водяного пара или отходящих газов реакции при повышенных температурах, отличающийся тем, что используют катализатор общей формулы I

в которой С обозначает железо,
D обозначает Р,
Е обозначает по меньшей мере один из элементов из группы, включающей Li, K, Na, Rb, Cs,
F обозначает Mn,
G обозначает по меньшей мере один из элементов из группы, включающей Sm, Gd, La,
Н обозначает по меньшей мере один из элементов из группы, включающей Si, Al, и
а обозначает число от 0 до 5,0,
b обозначает число от 0,5 до 5,0,
с обозначает число от 2 до 15,
d обозначает число от 0,01 до 5,0,
е обозначает число от 0,001 до 2,
f обозначает число от 0,001 до 5,
g обозначает число от 0 до 1,5,
h обозначает число от 0 до 800, а
х обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.

24. Способ по п.23, отличающийся тем, что им получают акролеин и акриловую кислоту из пропена.

25. Способ по одному из пп.23 и 24, отличающийся тем, что через катализатор или над катализатором пропускают реакционную смесь, содержащую олефин или ароматические соединения, воздух и инертные газы в соотношении между ними 1:6-9:3-18.



 

Похожие патенты:

Изобретение относится к усовершенствованному способу получения акролеина, акриловой кислоты или их смеси из пропана. .

Изобретение относится к катализатору селективного окисления этана до уксусной кислоты и/или селективного окисления этилена до уксусной кислоты, к способу получения уксусной кислоты с использованием вышеупомянутого катализатора.

Изобретение относится к одностадийному способу парофазного окисления алкана, такого, как пропан, приводящему к получению ненасыщенной карбоновой кислоты, такой, как акриловая или метакриловая кислота, в присутствии смешанного металлооксидного катализатора и при избытке алкана относительно количества кислорода.
Изобретение относится к усовершенствованному способу проведения непрерывного, гетерогенного, катализированного, частичного окисления в газовой фазе, по меньшей мере, одного органического соединения, выбранного из группы, включающей пропен, акролеин, изо-бутен, метакролеин, изо-бутан и пропан, в окислительном реакторе, загружаемая газовая смесь которого наряду с, по меньшей мере, одним подлежащим частичному окислению соединением и молекулярным кислородом в качестве агента окисления включает, по меньшей мере, один ведущий себя в основном инертно в условиях гетерогенного, катализированного, частичного окисления в газовой фазе газ-разбавитель, при котором для загружаемой газовой смеси в качестве источника как кислорода, так и инертного газа применяют также воздух, который до этого сжимают в компрессоре от низкого начального давления до повышенного конечного давления, где воздух перед его входом в компрессор подвергают, по меньшей мере, одной механической операции отделения, с помощью которой могут быть отделены диспергированные в воздухе частицы твердого вещества.

Изобретение относится к способу длительного проведения гетерогенно катализированного частичного окисления в газовой фазе пропена в акриловую кислоту, при котором содержащую пропен, молекулярный кислород и, по меньшей мере, один инертный газ исходную реакционную газовую смесь 1, содержащую молекулярный кислород и пропен в молярном соотношении O2:С3Н 6 1, сначала на первой стадии реакции пропускают при повышенной температуре через первый катализаторный неподвижный слой 1, катализаторы которого выполнены таким образом, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий молибден и/или вольфрам, а также, по меньшей мере, один из элементов группы, включающей висмут, теллур, сурьму, олово и медь, таким образом, что конверсия пропена при одноразовом проходе составляет 93 мол.% и связанная с этим селективность образования акролеина, а также образования побочного продукта акриловой кислоты вместе составляет 90 мол.%, температуру покидающей первую реакционную стадию продуктовой газовой смеси 1 посредством прямого и/или косвенного охлаждения, в случае необходимости, снижают и к продуктовой газовой смеси 1, в случае необходимости, добавляют молекулярный кислород и/или инертный газ, и после этого продуктовую газовую смесь 1 в качестве содержащей акролеин, молекулярный кислород и, по меньшей мере, один инертный газ исходной реакционной смеси 2, которая содержит молекулярный кислород и акролеин в молярном соотношении O2:C3H4O 0,5, на второй стадии реакции при повышенной температуре пропускают через второй катализаторный неподвижный слой 2, катализаторы которого выполнены так, что их активная масса представляет собой, по меньшей мере, один оксид мультиметаллов, содержащий элементы молибден и ванадий, таким образом, что конверсия акролеина при одноразовом проходе составляет 90 мол.% и селективность результирующегося на обеих стадиях образования акриловой кислоты, в пересчете на превращенный пропен, составляет 80 мол.% и при котором в течение времени повышают температуру каждого неподвижного катализаторного слоя независимо друг от друга, при этом частичное окисление в газовой фазе, по меньшей мере, один раз прерывают и при температуре катализаторного неподвижного слоя 1 от 250 до 550°С и температуре катализаторного неподвижного слоя 2 от 200 до 450°С состоящую из молекулярного кислорода, инертного газа и, в случае необходимости, водяного пара газовую смесь G пропускают сначала через катализаторный неподвижный слой 1, затем, в случае необходимости, через промежуточный охладитель и в заключение через катализаторный неподвижный слой 2, в котором по меньшей мере одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя 2 составляет 8°С или 10°С, причем длительное повышение температуры, составляющее 8°С или 10°С, имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 8°С или 10°С.

Изобретение относится к термическому способу разделения фракционной конденсацией смеси продукт-газа, полученного гетерогенным катализированным частичным окислением в газовой фазе пропена и/или пропана до акриловой кислоты, для отделения, по меньшей мере, одного массового потока, обогащенного акриловой кислотой, из смеси продукт-газа, содержащего акриловую кислоту, который включает непрерывную стационарную эксплуатацию, по меньшей мере, одного устройства для термического разделения, содержащего, по меньшей мере, одну эффективную разделительную камеру с ректификационной колонной имеющей массообменные тарелки в качестве встроенных разделительных элементов, в которую загружают смесь продукт-газа, содержащего акриловую кислоту, в качестве, по меньшей мере, одного массового потока, содержащего акриловую кислоту, и из которого выгружают, по меньшей мере, один массовый поток, содержащий акриловую кислоту, при условии, что массовый поток, который в общем загружают в эффективную разделительную камеру и получают путем сложения загружаемых в эффективную разделительную камеру отдельных массовых потоков, содержит X вес.% отличных от акриловой кислоты компонентов, массовый поток, который выгружают из эффективной разделительной камеры с наибольшей долей акриловой кислоты, содержит Y вес.% отличных от акриловой кислоты компонентов, соотношение X:Y составляет 5, эффективная разделительная камера, за исключением места загрузки и места выгрузки потока, ограничивается твердой фазой и содержит, кроме массообменных тарелок в качестве встроенных разделительных элементов в ректификационной колонне, по меньшей мере, один циркуляционный теплообменник, и общий объем камеры, заполненный жидкой фазой, составляет 1 м3, причем температура жидкой фазы, по меньшей мере, частично составляет 80°С, при разделении эффективной разделительной камеры на n индивидуальных объемных элементов, причем самая высокая и самая низкая температуры находящейся в отдельном объемном элементе жидкой фазы различаются не более чем на 2°С, а объемный элемент в эффективной разделительной камере является сплошным, общее время пребывания tобщ 20 ч,причем А=(Тi-То )/10°С, То=100°С, Ti=среднее арифметическое значение из самой высокой и самой низкой температуры объемного элемента i в жидкой фазе в °С, msi = общая масса акриловой кислоты, содержащаяся в объеме жидкой фазы объемного элемента i,mi = общее количество выгружаемого из объемного элемента i потока жидкофазной массы, и при условии, что объемные элементы i с содержащейся в них жидкофазной массой mi и в качестве объемных элементов с мертвой зоной также не включены в сумму всех объемных элементов i, как и объемные элементы i, которые не содержат жидкую фазу, и общее количество жидкой фазы, содержащейся в объемных элементах с мертвой зоной, составляет не более 5 вес.% от общего количества жидкой фазы, содержащейся в эффективной разделительной камере.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к усовершенствованному способу проведения гетерогенно каталитического частичного окисления в газовой фазе акролеина в акриловую кислоту, при котором исходную реакционную газовую смесь, содержащую акролеин, молекулярный кислород и, по меньшей мере, один инертный газ-разбавитель, пропускают через находящийся при повышенной температуре катализаторный неподвижный слой, катализаторы которого выполнены так, что их активная масса содержит, по меньшей мере, один оксид мультиметалла, который содержит элементы Мо и V, и при котором в течение времени повышают температуру катализаторного неподвижного слоя, при этом частичное окисление в газовой фазе прерывают, по меньшей мере, один раз и при температуре катализаторного неподвижного слоя от 200 до 450°С через него пропускают свободную от акролеина, содержащую молекулярный кислород, инертный газ и, в случае необходимости, водяной пар, а также, в случае необходимости, СО, газовую смесь G окислительного действия, причем, по меньшей мере, одно прерывание осуществляют прежде, чем повышение температуры катализаторного неподвижного слоя составляет длительно 2°С, или 4°С, или 8°С, или 10°С, причем длительное повышение температуры, составляющее 2°С, или 4°С, или 8°С, или 10°С имеется тогда, когда при нанесении фактического протекания температуры катализаторного неподвижного слоя в течение времени на проложенной через точки измерения уравнительной кривой по разработанному Лежандром и Гауссом методу наименьшей суммы квадратов погрешностей достигнуто повышение температуры 2°С, или 4°С, или 8°С, или 10°С.

Изобретение относится к композиции катализатора; способу его приготовления и способу селективного окисления этана и/или этилена до уксусной кислоты. .

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.

Изобретение относится к усовершенствованному способу получения акролеина, акриловой кислоты или их смеси из пропана. .
Изобретение относится к усовершенствованному способу проведения непрерывного, гетерогенного, катализированного, частичного окисления в газовой фазе, по меньшей мере, одного органического соединения, выбранного из группы, включающей пропен, акролеин, изо-бутен, метакролеин, изо-бутан и пропан, в окислительном реакторе, загружаемая газовая смесь которого наряду с, по меньшей мере, одним подлежащим частичному окислению соединением и молекулярным кислородом в качестве агента окисления включает, по меньшей мере, один ведущий себя в основном инертно в условиях гетерогенного, катализированного, частичного окисления в газовой фазе газ-разбавитель, при котором для загружаемой газовой смеси в качестве источника как кислорода, так и инертного газа применяют также воздух, который до этого сжимают в компрессоре от низкого начального давления до повышенного конечного давления, где воздух перед его входом в компрессор подвергают, по меньшей мере, одной механической операции отделения, с помощью которой могут быть отделены диспергированные в воздухе частицы твердого вещества.

Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина реакцией газофазного каталитического окисления, по меньшей мере, одного окисляемого вещества, выбранного из пропилена, пропана, изобутилена и (мет)акролеина, молекулярным кислородом или газом, который содержит молекулярный кислород, с использованием многотрубного реактора, имеющего такую конструкцию, что имеется множество реакционных труб, снабженных одним (или несколькими) каталитическим слоем (каталитическими слоями) в направлении оси трубы, и снаружи указанных реакционных труб может течь теплоноситель для регулирования температуры реакции, в котором изменение по повышению температуры указанной реакции газофазного каталитического окисления проводится путем изменения температуры теплоносителя на впуске для регулирования температуры реакции, наряду с тем, что (1) изменение температуры теплоносителя на впуске для регулирования температуры реакции проводится не более чем на 2°С для каждой операции изменения как таковой, (2) когда операция изменения проводится непрерывно, операция изменения проводится так, что интервал времени от операции изменения, непосредственно предшествующей данной, составляет не менее 10 мин и, кроме того, разность между максимальным значением пиковой температуры реакции каталитического слоя реакционной трубы и температурой теплоносителя на впуске для регулирования температуры реакции составляет не менее 20°С.

Изобретение относится к усовершенствованному способу получения (мет)акролеина и/или (мет)акриловой кислоты путем гетерогенного каталитического частичного окисления в газовой фазе, при котором находящийся в реакторе свежий неподвижный слой катализатора при температуре 100-600°С нагружают смесью загрузочного газа, которая наряду с, по меньшей мере, одним подлежащим частичному окислению С3/С4 органическим соединением-предшественником и окислителем - молекулярным кислородом содержит, по меньшей мере, один газ-разбавитель, причем процесс осуществляют после установки состава смеси загрузочного газа при неизменной конверсии органического соединения-предшественника и при неизменном составе смеси загрузочного газа сначала во входном периоде в течение 3-10 дней при нагрузке от 40 до 80% от более высокой конечной нагрузки, а затем при более высокой нагрузке засыпки катализатора смесью загрузочного газа, причем во входном периоде максимальное отклонение конверсии органического соединения-предшественника от арифметически усредненной по времени конверсии и максимальное отклонение объемной доли одного из компонентов смеси загрузочного газа, окислителя, органического соединения-предшественника и газа-разбавителя, от арифметически усредненной по времени объемной доли соответствующего компонента смеси загрузочного газа не должны превышать ±10% от соответствующего арифметического среднего значения.

Изобретение относится к усовершенствованному способу контроля, регулирования и/или управления процессом получения (мет)акролеина и/или (мет)акриловой кислоты частичным окислением в газовой фазе С3- и/или С4-соединений-предшественников в присутствии гетерогенного, имеющего форму частиц катализатора, в реакторе с двумя или более вертикальными, расположенными параллельно друг другу при образовании каждый раз зазора термолистовыми пластинами, причем в зазорах размещают гетерогенный, имеющий форму частиц катализатор и газообразную реакционную смесь пропускают через зазоры, причем в качестве величины контроля, управления и/или регулирования выбирают одну или несколько температурных величин, которые измеряют в одном или нескольких зазорах, в одной или нескольких точках измерения, которые распределяют по высоте каждого зазора.
Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного продукта частичного окисления и/или аммокисления углеводорода, выбранного из группы, включающей акролеин, акриловую кислоту, метакролеин, метакриловую кислоту, акрилонитрил и метакрилонитрил, при котором, по меньшей мере, один насыщенный углеводород подвергают гетерогенно катализируемому дегидрированию в газовой фазе с получением газовой смеси, содержащей, по меньшей мере, один частично дегидрированный углеводород, содержащиеся в газовой смеси компоненты, отличные от насыщенного углеводорода и частично дегидрированного углеводорода, оставляют в ней или с получением дополнительной газовой смеси частично или полностью отделяют, и газовую смесь и/или дополнительную газовую смесь используют для получения дальнейшей газовой смеси, дополнительно содержащей молекулярный кислород и/или молекулярный кислород и аммиак, при этом дальнейшую газовую смесь подвергают, по меньшей мере, одному гетерогенно катализируемому частичному окислению и/или аммокислению содержащегося в газовой смеси и/или дополнительной газовой смеси, по меньшей мере, одного частично дегидрированного углеводорода, причем газовую смесь, дополнительную газовую смесь и/или дальнейшую газовую смесь перед, по меньшей мере, одним частичным гетерогенно катализируемым окислением и/или аммокислением подвергают, по меньшей мере, одному механическому разделению, направленному на отделение содержащихся в указанных газовых смесях частиц твердого вещества.

Изобретение относится к усовершенствованному способу улавливания (мет)акролеина или (мет)акриловой кислоты, включающему стадию охлаждения газообразной реакционной смеси, содержащей (мет)акролеин или (мет)акриловую кислоту, полученный/ную реакцией каталитического окисления в паровой фазе одного или обоих реагентов, выбранных из (А) пропана, пропилена или изобутилена и (В) (мет)акролеина, молекулярным кислородом или газом, содержащим молекулярный кислород, до температуры 140-250°С; контактирования указанной газообразной реакционной смеси с растворителем, температура которого составляет 20-50°С, в установке улавливания для улавливания (мет)акролеина или (мет)акриловой кислоты в растворителе, где указанная установка улавливания содержит зону контактирования, где газообразная реакционная смесь контактирует с растворителем, имеющую поперечное сечение круглой формы и множество устройств подачи газообразной реакционной смеси для подачи газообразной реакционной смеси в зону контактирования, устройства подачи газообразной смеси установлены в зоне контактирования на одной высоте в направлении к центру зоны контактирования, газообразная реакционная смесь подается в зону контактирования из устройств подачи газовой смеси и подвергается соударению непосредственно в одной точке зоны контактирования, и установка улавливания не имеет устройства, которое предотвращает прямое соударение газообразной смеси, подаваемой из устройств подачи газообразной реакционной смеси.
Изобретение относится к усовершенствованному способу получения (мет)акриловой кислоты или (мет)акролеина, включающему в себя процесс каталитического газофазного окисления для получения (мет)акриловой кислоты или (мет)акролеина подачей пропилена, пропана или изобутилена и газа, содержащего молекулярный кислород, в реактор, заполненный катализатором, содержащим композицию из оксидов металлов, включая Мо, где газ, содержащий молекулярный кислород, непрерывно подают извне на катализатор как во время работы установки, так и во время остановки процесса каталитического газофазного окисления.
Изобретение относится к способу получения катализаторов для электролизеров с твердым полимерным электролитом. .
Наверх