Способ получения окислов урана из тетрафторида урана


 


Владельцы патента RU 2414428:

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" (RU)

Изобретение может быть использовано для конверсии тетрафторида обедненного урана. Тетрафторид урана в противоточном режиме контактирует с простым эфиром со строением R2O, где R - Н, СН3, C2H5, С3Н7, С4Н9, при температурах 450-550°С в течение 15-120 мин при мольном соотношении UF4/эфир от 1÷2,64 до 1÷25,08. Изобретение позволяет получать оксиды урана, не загрязненные фтором. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области разработки экономически рентабельной и экологически безопасной технологии конверсии тетрафторида обедненного урана, полученного тем или иным способом, в частности, в окислы урана, предназначенные для длительного хранения или использования в реакторах на быстрых нейтронах, и алкилфториды, используемые в дальнейшем в качестве озонобезопасных хладоагентов, растворителей, пожаротушащих веществ или средств травления полупроводниковых плат.

Возможна таким же образом конверсия природного или обогащенного тетрафторида урана в окислы, используемые в дальнейшем для получения двуокиси урана керамического сорта для приготовления ядерного топлива.

Известен метод получения оксидов урана и нерадиоактивных фторсодержащих соединений из UF4 и твердых оксидов следующих элементов: Р, Ge, As, Tl, Sb, Ti, Zr, W и Nb, при их смешении в стехиометрических количествах и температуре 400-1000°С [US Patent 5918106, МПК С01В 9/00, C01G 43/01].

Известен также метод получения тетрафторида кремния из тетрафторида урана, где продуктом, содержащим уран, является двуокись урана [US Patent 5888468, data of patent: Mar. 30, 1999, Int. Cl.6 С01В 33/08; C01G 43/01]. Взаимодействие происходит при стехиометрическом соотношении компонентов и температуре 400-750°С.

Наиболее близким является способ конверсии тетрафторида урана в пламени кислорода и водорода или углеводородов - ацетилена или пропана (Орехов В.Т., Рыбаков А.Г. и др. Патент России №2027674 с приоритетом от 28.07.1992 г.).

Реагенты предварительно подогревают до 450-550°С. В пламени образуется пароводяная газовая смесь, которая при реакции с UF4 приводит к образованию двуокиси урана с остаточным содержанием фтора 0,07-0,5% и 80-90%-ного фтороводорода. Температура в пламени достигает 1200°С.

К недостаткам этого способа следует отнести:

- необходимость оснащения реактора горелкой и организации устойчивого факела пламени;

- необходимость диспергирования UF4 и обеспечение его необходимого контакта с пламенем;

- отсутствие возможности использования каких-либо насадок внутри реактора, так как это резко снижает температуру пламени и даже меняет характер горения;

- высокая температура (до 700°С) отходящих реагентов, что вследствие наличия HF приводит к существенной коррозии конструкционных материалов.

Настоящее изобретение основано на следующих соображениях.

Рассматривается гомологический ряд простых эфиров, являющихся основаниями Льюиса по отношению к UF4. Молекулы простых эфиров имеют строение R2O, где R=СН3, С2Н5, С3Н7, С4Н9, которое сходно со строением молекулы воды Н-О-Н.

Известно, что при взаимодействии тетрафторида урана с водой в интервале температур 20-850°С образуются уранилфторид и фтороводород [Федерер Д. Атомная техника за рубежом, 1969, №9, с.18-22]:

UF4+2H2O→UO2F2+4HF.

Наличие алкильных радикалов в молекулах простых эфиров резко меняет их свойства по сравнению с водой за счет смещения электронной плотности в область ятома кислорода, то есть их основность и реакционная способность по отношению к UF4 будут выше.

Таким образом, простые эфиры способны к более глубокому взаимодействию с UF4, чем вода в тех же условиях проведения процесса, в результате чего будут образовываться оксиды урана, не содержащие фтор, и фторированные производные углеводородов, которые являются озонобезопасными веществами второго поколения:

UF4+2R1-O-R2→UO2+4(R1,R2)F.

Эти соображения подтвердились на практике и позволили исключить те недостатки, которые были присущи прототипу.

Технический результат достигается тем, что тетрафторид урана контктирует с простым эфиром со строением R2O, где R - Н, СН3, C2H5, С3Н7, С4Н9, при температурах 450-550°С, в течение 15-120 мин, мольном соотношении UF4/эфир от 1÷2,64 до 1÷25,08. Простой эфир разбавляют аргоном.

Аппаратурное оформление процесса конверсии тетрафторида в оксиды представлено на чертеже. Установка включала узлы подачи и регулирования расхода аргона (баллон с аргоном (1) и регулятор расхода (7)) и простого эфира (контейнер с эфиром (2) и регулятор расхода (8)), реактор взаимодействия UF4 с простым эфиром (3), узел улавливания газовой фазы после реактора (пробоотборник (4), конденсатор (5) и дрексель (6)).

Реактор с помещенной в него лодочкой, которая содержит навеску тетрафторида урана, выводили на заданный температурный режим (450-550°С) и выдерживали в таких условиях в течение определенного времени (15-120 мин), при этом подавая в реактор простой эфир (расход ~4-10 л/ч), разбавленный аргоном.

Исходные реагенты и продукты реакции подвергались химическому, ИК-спектроскопическому и хроматографическому анализам.

В примерах 1-5 представлены данные по изучению взаимодействия тетрафторида урана с диметиловым эфиром (ДМЭ), в примере 6 описываются характер и результаты взаимодействия UF4 с диэтиловым эфиром (ДЭЭ), в примере 7 - с дибутиловым эфиром (ДБЭ), в примере 8 - с метил-трет-бутиловъш эфиром СН3-O-С-(СН3)3.

Пример 1. Время проведения опыта 2 часа, температура в зоне реагирования 550°С. Масса навески тетрафторида урана 4,0905 г, расход ДМЭ~7-10 л/ч, что при времени пропускания 2 часа составляет 15 г (мольное соотношение UF4:ДМЭ=1:25,08). Значительное превышение расхода ДМЭ над стехиометрией объясняется неподвижным состоянием лодочки с UF4 во время опыта.

Пример 2. Время проведения опыта 1 час, температура в зоне реагирования 550°С. Масса навески тетрафторида урана 4,0500 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 1 час составляет 7,5 г (мольное соотношение UF4:ДМЭ=1:12,64).

Пример 3. Время проведения опыта 0,5 часа (30 мин), температура в зоне реагирования 550°С. Масса навески тетрафторида урана 3,7205 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 0,5 часа составляет 4 г (мольное соотношение UF4:ДМЭ=1:7,34).

Пример 4. Время проведения опыта 0,25 часа (15 мин), температура в зоне реагирования 550°С. Масса навески тетрафторида урана 5,1650 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 0,25 часа составляет 2 г (мольное соотношение UF4:ДМЭ=1:2,64).

Во всех вышеприведенных примерах твердый продукт представлял собой смесь оксидов урана (диоксид, закись-окись, триоксид урана), основу которого составляла двуокись урана с различным кислородным коэффициентом UO2+x. Фтора в продукте обнаружено не было.

Предварительные хроматографические анализы органической фазы показали наличие фторированных производных метана. Количество их в продукте зависит от избытка подаваемого эфира.

Пример 5. Для определения возможности перевода тетрафторида в окислы урана при более низких температурах был проведен опыт при 450°С и времени контакта 1 час. Масса навески тетрафторида урана 4,1240 г, расход ДМЭ ~7-10 л/ч, что при времени пропускания 1 час составляет 7,5 г (мольное соотношение UF4:ДМЭ=1:12,41).

Твердые и газообразные продукты аналогичны полученным в предыдущих опытах.

Для получения возможности перенесения результатов опытов по взаимодействию тетрафторида урана с ДМЭ на другие члены гомологического ряда R1-O-R2 были проведены опыты с диэтиловым, дибутиловым и метил-трет-бутиловым эфирами (примеры 6, 7 и 8 соответственно).

Пример 6. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 4,5330 г, расход ДЭЭ ~4-6 л/ч, что при времени пропускания 1 час составляет 21,41 г (мольное соотношение UF4:ДЭЭ=1:20,04). Эфир предварительно подогревали до температуры 30°С, чтобы он перешел в газовую фазу.

Пример 7. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 4,8525 г, расход ДБЭ ~6-8 л/ч, что при времени пропускания 1 час составляет 26,06 г (мольное соотношение UF4:ДЭЭ=1:12,97). Эфир предварительно подогревали до температуры 160°С, чтобы он перешел в газовую фазу.

Пример 8. Время проведения опыта 1 час, температура в зоне реагирования 500°С. Масса навески тетрафторида урана 5,6372 г, расход метил-трет-бутилового эфира ~2-4 л/ч, что при времени пропускания 1 час составляет 11,44 г (мольное соотношение UF4:метил-трет-бутиловый эфир = 1:13,00). Эфир предварительно подогревали до температуры 80°С, чтобы он перешел в газовую фазу.

Как и в примерах 1-5, в опытах 6, 7 и 8 твердый продукт представлял собой смесь оксидов урана - диоксида, закиси-окиси и триоксида. Основой твердого продукта являлся диоксид урана коричневого цвета.

Фтора в составе твердого продукта не обнаружено.

Преимущества заявляемого метода:

1. Процесс получения оксидов урана с помощью простых эфиров происходит при относительно низких температурах - 450-550°С.

2. Отсутствие коррозионного воздействия на конструкционные материалы вследствие получения алкилфторидов вместо фтороводорода.

3. Получение оксидов урана, не содержащих фтора. Возможность получения алкилфторидов, используемых в дальнейшем в качестве озонобезопасных хладоагентов, растворителей, пожаротушащих веществ или средств травления полупроводниковых плат.

4. Проведение процесса не в режиме витания частиц №4 в факеле пламени, а просто в слое UF4 или во вращающемся реакторе.

С целью снижения расхода простых эфиров процесс следует осуществлять в противоточном режиме, как и в прототипе.

1. Способ получения оксидов урана из тетрафторида урана в противоточном режиме, отличающийся тем, что тетрафторид урана контактирует с простым эфиром со строением R2O, где R - Н, СН3, С2Н5, С3Н7, С4Н9 при температурах 450-550°С в течение 15-120 мин при мольном соотношении UF4/ ЭФИР от 1÷2,64 до 1÷25,08.

2. Способ по п.1, отличающийся тем, что тетрафторид урана контактирует с простым эфиром, разбавленным аргоном.



 

Похожие патенты:

Изобретение относится к области разработки экономически рентабельной технологии конверсии обедненного тетрафторида урана с получением окислов урана для длительного хранения или использования в быстрых реакторах, а также с попутным получением ценных фторсодержащих веществ.

Изобретение относится к области технологии ядерных материалов, в частности к производству ядерного топлива с определенным содержанием изотопа 235U. .
Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной промышленности, например, для изготовления топливных сердечников ТВЭЛов ядерных реакторов.

Изобретение относится к области металлургии и может быть использовано в производстве ядерного топлива. .

Изобретение относится к области металлургии. .

Изобретение относится к способу переработки радиоактивных отходов топливных композиций, содержащих диоксид урана и полиэтилен, с получением товарной закиси-окиси урана, используемой для воспроизводства ядерного топлива.

Изобретение относится к способам переработки концентратов оксидов природного урана и может быть использовано в технологии получения материалов топливного цикла, в частности, для получения обогащенного урана.
Изобретение относится к области получения топлива для атомных электростанций и может быть использовано для получения оксидов урана высокой степени чистоты при переработке химического концентрата природного урана.

Изобретение относится к области неорганической химии, в частности металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной технологиях.

Изобретение относится к области неорганической химии, в частности к металлургии урана и производству соединений урана, и может быть использовано в химической и ядерной технологиях.
Изобретение относится к области неорганической химии, в частности к металлургии урана и производству его соединений, и может быть использовано в химической и ядерной технологиях
Изобретение относится к области химической технологии неорганических веществ и может быть использовано при переработке обедненного гексафторида урана

Изобретение может быть использовано в химической промышленности. Способ выделения фтора включает загрузку смеси, содержащей фторид урана и окислитель, в реакционный сосуд со сплошным основанием и проемом, обращенным в сторону от основания, нагрев этой смеси в реакционном сосуде и образование по меньшей мере одного оксида урана и нерадиоактивного газообразного продукта из нагретой смеси. При этом осуществляют регулирование толщины слоя смеси в реакционном сосуде для достижения требуемого выхода реакции и/или требуемой скорости реакции получения нерадиоактивного газообразного продукта. Используемая смесь может содержать тетрафторид урана UF4 и реагент для выделения фтора, выбранный из группы, включающей оксид германия GeO, диоксид германия GeO2, кремний Si, триоксид бора B2O3 и диоксид кремния SiO2. Изобретение позволяет повысить выход фтора. 3 н. и 13 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана. Производят получение тетрафторида кремния и диоксида урана из тетрафторида урана. Берут диоксид кремния и подвергают его механоактивации. Затем осуществляют его гомогенизацию с тетрафторидом урана в стехиометрическом соотношении. Гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и подвергают термообработке в среде сухого инертного газа. Изобретение позволяет проводить конверсию тетрафторида урана с высоким выходом высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, при температуре не выше 600°C. 1 ил., 1 табл., 7 пр.

Изобретение может быть использовано для утилизации продуктов переработки отвального гексафторида урана и получения особо чистого кремния. Реакционную смесь, содержащую тетрафторид урана и двуокись кремния в мольном соотношении (1,007-1,015):1, соответственно, подвергают механохимической активации в дезинтеграторе до содержания в реакционной смеси фракции частиц 7-15 мкм в пределах 34-45%. Не позднее чем через 30 мин после окончания процесса активации реакционную смесь термообрабатывают при 600-750°C. В результате твердофазного взаимодействия между тетрафторидом урана и двуокисью кремния получают свободную от кремния закись-окись урана с содержанием фтора 0,2 - 0,26% и тетрафторид кремния. 1 ил., 5 пр.

Изобретение относится к области технологии ядерных материалов и может быть использовано при конверсии тетрафторида урана, в том числе обедненного, в октаоксид триурана с получением ценного прекурсора поликристаллического кремния - тетрафторида кремния. Способ получения тетрафторида кремния и октаоксида триурана из тетрафторида урана заключается в том, что смешивают тетрафторид урана с диоксидом кремния, который предварительно подвергают механоактивации в присутствии фторида натрия 0,5-3% масс., гомогенизируют смесь в стехиометрическом соотношении, гомогенизированную шихту гранулируют, сушат при температуре 250-300°C и проводят термообработку гранул в среде сухого воздуха в течение 1-2 ч при температуре не выше 600°C. Изобретение обеспечивает высокий выход высокочистого тетрафторида кремния, не загрязненного летучими соединениями урана, а также снижение температуры процесса, что позволяет использовать более дешевые конструкционные материалы. 1 ил., 1 табл., 16 пр.

Изобретение относится к способу получения оксидов урана в технологии производства гексафторида урана для обогащения, а именно получения триоксида урана в непрерывном процессе термической обработки нитрата уранила. Способ включает подачу уранил-нитрата в горизонтальный цилиндрический обогреваемый в центральной части реактор с приводом вала перемешивающего устройства, измельчение отвердевающего триоксида урана и перемешивание полученного в реакторе порошка, а также его перемещение с помощью вращательного и возвратно-поступательного движения перемешивающего устройства, в качестве которого используют шнековый вал с прерывистыми витками, причем измельчение порошка дополнительно обеспечивают посредством взаимодействия прерывистых витков шнекового вала с лопаткообразными неподвижными стержнями, установленными на внутренней поверхности корпуса реактора с образованием уменьшающихся зазоров между прерывистыми витками и стержнями по мере приближения к зоне выгрузки, при этом обеспечивают предотвращение проскока некондиционного продукта и отвод отходящих газов, выгрузку порошка из реактора. Способ обеспечивает увеличение производительности реактора, улучшение условий труда обслуживающего персонала, обслуживания и ремонта оборудования, а также уменьшение затрат электроэнергии. 1 з.п. ф-лы, 3 ил., 2 пр.
Наверх