Способ получения циклогексанола



Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола
Способ получения циклогексанола

 


Владельцы патента RU 2420506:

Учреждение Российской академии наук Институт нефтехимии и катализа РАН (RU)

Настоящее изобретение относится к способу получения циклогексанола, который является исходным сырьем для синтеза циклогексанона и адипиновой кислоты, являющихся основными полупродуктами производства капрона, найлона и капролактама. Способ заключается в окислении циклогексана бромноватистой кислотой HOBr, генерированную in situ из четырехбромистого углерода (CBr4) и воды (Н2О) в присутствии молибденсодержащего катализатора Мо(СО)6 при температуре 125-160°С в течение 4-6 часов, при мольном соотношении [катализатор]:[циклогексан]:[CBr4]:[Н2О]=1÷3:100:100:1500÷2000. Предлагаемый способ позволяет получить целевой продукт с высоким выходом при использовании доступного и дешевого сырья. 1 табл.

 

Предлагаемое изобретение относится к области органической химии, в частности к способу получения циклогексанола.

Циклогексанол является исходным сырьем для получения циклогексанона и адипиновой кислоты - основных полупродуктов производства капролактама, капрона и найлона (И.В.Березин, Е.Т.Денисов, Н.М.Эмануэль. Окисление циклогексана. МГУ. 1962, 302 с. [1]; P.Leconte, S.Veracini, P.Morel. US 2008/0064902 A1 (2008) [2]).

Циклогексанол получают окислением циклогексана с участием гомогенных металлокомплексных катализаторов и таких окислительных реагентов, как кислород, пероксид водорода, алкилгидропероксиды, йодозобензол, пероксосульфаты и др.

Основы процесса окисления циклогексана (1) кислородом с использованием в качестве катализатора нафтената кобальта изложены в ряде патентов (С.Фудзикава, М.Накахигаси, Х.Сато. Японск. пат. №4056 (1965) [3]; A.Krzyszioforski, K.Balcerzak, S.Ciborowski, A.Janitz, A.Kasnia. Пат. ЧСФР №274734 (1991) [4]; J.Hartig, G.Schuch, A.Stössel, G.Herrmann, A.Brunner, P.Zehner, O.Grosskinsky. Заявка №3328771, ФРГ (1985) [5]; М.С.Фурман, В.М.Олевский, А.М.Гольдман и др. Авт.св. СССР №274101 (1970) [6]; D.P.Landray, L.R.Fodor, B.E.Murphree, J.M.Rung. US 2005/0096486 A1 (2005) [7]).

Каталитическое окисление циклогексана кислородом проводят при температуре 145-200°C и давлении 10-34 атм. Катализатором служит нафтенат кобальта в концентрации 0.05%. Дополнительное инициирование достигалось добавками циклогексанона (0.3%). В этих условиях в течение 2-2.5 ч глубина окисления циклогексана составила 10-11% при выходе смеси, состоящей из циклогексанола (2)+циклогексанона (3) 70-80%.

Добавки уксусной кислоты к циклогексану в присутствии таких катализаторов, как Co(асас)2, Co(асас)3 и Ni(асас)2 способствуют увеличению скорости поглощения кислорода и выхода продуктов (Р.В. Кучер, А.П.Покуца, В.И.Тимохин. Докл. АН СССР. 310, №3, 642-645 (1990) [8]):

Для окисления циклогексана можно использовать гетерогенный кобальт - боратный катализатор (Co:B=1-3:1). (K.Takagi, T.Jshida. Ger. Pat. N 1911228 (1968) [9]; K.Takagi, T.Jshida. Япон. пат.N 20618 (1972) [10]:

Циклогексан (465 г) и 5 г кобальт-боратного катализатора в автоклаве нагревали до 160°C и в реактор подавали воздух 9.5 кг/см3 за 1.5 часа. Охлаждение реакционной массы с последующей перегонкой дало смесь, состоящую из 16.55 г циклогексанола (2) и 17.74 г циклогексанона (3) при конверсии циклогексана 7.15% [10].

Данный метод окисления циклогексана имеет ряд существенных недостатков:

1. Взрывоопасность процесса.

2. Низкая конверсия циклогексана.

3. Неселективность процесса.

4. Низкий выход циклогексанола.

При окислении циклогексана (1) пероксидом водорода (H2O2) в уксусной кислоте в присутствии каталитических количеств VO(acac)2 и глиоксаля при 40°C и атмосферном давлении число оборотов катализатора достигает 4400. На начальном этапе в присутствии VO(acac)2 образуется (2), (3) и гидропероксид циклогексила (4) независимо от того, в какой газовой среде (воздух, азот, аргон) протекает реакция. В присутствии Co(acac)2 единственным продуктом на начальном этапе является циклогексилгидропероксид (4) (А.Покуца, Ж.Ле Брас, Ж.Мюзарт. Кинетика и катализ, т.48, №1, 32-37 (2007) [11]):

Окисление проводили по следующей методике: смесь (1), глиоксаля и раствора VO(acac)2 в уксусной кислоте нагревали до 40°C при перемешивании на воздухе или в условиях барботирования аргона. Через равные промежутки времени отбирали пробы реакционной смеси, анализировали методом ГЖХ. Число оборотов катализатора составило за 2 ч - 4000, а за 3 ч - 4400, при этом расход H2O2 составил 71-73% [11]. В условиях опытов циклогексанол (2) не окисляется в циклогексанон (3). Кроме того циклогексанол не влияет на скорость накопления (3), следовательно, циклогексанол не является промежуточным продуктом при образовании (3), и оба продукта возникают из (1) в параллельных реакциях (А.Е.Гехман, Д.И.Шишкин, И.И.Моисеев. Изв. АН СССР. Сер. хим. №6, 1436 (1987) [12]).

Недостатки метода:

1. Низкий выход целевого продукта.

2. Неселективность процесса.

3. Использование взрывоопасного и нестабильного окислителя пероксида водорода.

В работе (M.Faraj, C.L.Hile. J.Chem.Soc. Chem. Commun. N 9, 1487-1489 (1987) [13]) осуществлено каталитическое окисление циклогексана (1) трет-бутилпероксидом при 65°C в атмосфере аргона в бензоле, 1,2-дихлорэтане и MeCN. В качестве катализаторов были испытаны тетра-н-гексиламмониевые соли гетерополивольфраматов общей формулы [PW11(M)O39]5-, где M=Co(2+), Mn(2+), Fe(2+), а также трифлатные соли кобальта, марганца и меди Co(2+)(OTf)2, Mn(OTf)2 и Cu(OTf)2 (OTf - трифторметансульфонат). Основными продуктами реакции являются циклогексанол (2), циклогексанон (3) и трет-бутиловый спирт. Наибольший выход (2), (3) достигается в среде бензола (число оборотов катализатора ~100), наименьший - в ацетонитриле. С увеличением концентрации трет-бутилгидропероксида селективность процесса снижается из-за образования побочных продуктов.

Пероксидные комплексы переходных металлов были использованы для окисления циклогексана (1) как в стехиометрических, так и в каталитических количествах (L.Saussine, A.Robine, H.Mimoun. US 4, 659, 829 (1987) [14]).

В нагретый реактор помещают 1 ммоль комплекса (К) в 25 мл циклогексана, смесь дегазируют и нагревают в атмосфере аргона, продукты анализируют методом ГЖХ.

10 ммоль t-BuOOH (чистый или в растворе) в течение 30 мин добавляют к раствору 0.01 ммоль катализатора (K) в 25 мл циклогексана при 80°C. Смесь перемешивают и нагревают при 80°C еще 1 час, затем анализируют методом ГЖХ [14].

Недостатки методов:

1. Взрывоопасность процесса из-за использования в качестве окислителя гидропероксида трет-бутила.

2. Образование смеси продуктов.

3. Труднодоступность пероксидных катализаторов.

Для окисления циклогексанона предложено использовать пероксокомплекс (K2), полученный взаимодействием тетра(α,α,α,α-о-пивалоилфенил)порфирина железа с кислородом, затем восстановленный амальгамой цинка в присутствии метилвиологена в среде CH3CN (А.М.Хенкин. Изв. АН СССР. Сер. хим. №10, 2329-2330 (1986) [15]). Указанный комплекс активирует кислород в реакциях окисления при добавлении уксусного ангидрида. В целом, данная каталитическая система моделирует каталитический цикл цитохрома Р-450.

С использованием комплекса K2 осуществлено окисление циклогексана в циклогексанол, правда с низким выходом [15].

Недостатки метода:

1. Труднодоступность катализатора.

В работе (R.Raja, P.Ratnasamy. US Patent 5767320 (1998) [16]) осуществлено окисление циклогексана с образованием смеси циклогексанола (2) и циклогексанона (3) кислородом в присутствии комплексов фталоцианина или порфирина с переходными металлами, такими как Fe, Co, Cu, Cr и Mn. Окисление проводили в присутствии растворителей (CH3CN, CH3OH BuOH, циклогексанол) и промоторов (алкилгидропероксид, диалкилпероксид). Катализатор перед использованием наносили на твердую матрицу (силикагель, оксид алюминия, алюмосиликаты, молекулярные сита).

Недостатки метода:

1. Труднодоступность катализатора.

2. Взрывоопасность процесса (использование O2).

3. Низкая конверсия.

4. Неселективность процесса.

Осуществлено окисление циклогексана кислородом и пероксидом водорода в среде ацетонитрила в присутствии комплекса Fe(ClO4)3·H2O в качестве катализатора (R.H.Fish, M.S.Konings, K.J.Oberhausen, R.H.Fong, W.M.Yu, G.Christou, J.B.Vincent, D.K.Coggin, R.M.Buchanan. Jnorg. Chem. V.30, N 15, 3002-3006 (1991) [16]). Продуктами окисления циклогексана в этом случае являются циклогексанол (2) и циклогексанон (3) ([2]:[3]=1:2). В отсутствие кислорода выход продуктов не превышает 31%.

Недостатки метода:

1. Взрывоопасность процесса.

2. Низкая селективность.

Комплекс [LMnIV(O)3MnIVL](PF6)2 (K3) (L - 1,4,7-триметил-1,4,7-триаза-циклононан) катализирует оксигенирование циклогексана с помощью H2O2 с образованием смеси циклогексанола (2), циклогексанона (3) и циклогексилпероксида (4). Обязательный компонент реакционной смеси - органическая кислота (лучше уксусная), а растворителем может служить ацетонитрил или ацетон. (Г.Б.Шульпин, Дж.Р.Линдсэй-Смит. Изв. АН. Сер. хим. №12, 2459-2465 (1998) [17]):

Окисление циклогексана (1) проводили на воздухе в термостатируемых стеклянных цилиндрических сосудах при интенсивном перемешивании. Объем реакционного раствора в большинстве экспериментов составлял 5 мл. Порцию 35%-ного водного раствора пероксида водорода или раствор пероксиуксусной кислоты в AcOH, или твердую м-хлорпероксибензойную кислоту добавляли к реакционному раствору (растворитель - ацетонитрил), содержащему катализатор (K3) и циклогексан. В начальный период реакции в растворе присутствует небольшое количество циклогексилпероксида, накопление циклогексанол (2) и циклогексанон (3) начинается лишь после небольшого (~15 мин) индукционного периода, причем вначале образуются с равными скоростями (2) и (3), однако уже через 40 мин концентрация циклогексанона (3) начинает заметно превышать количество циклогексанола (2) [17].

Недостатки метода:

1. Труднодоступность катализатора.

2. Использование большого избытка уксусной кислоты.

3. Взрывоопасность процесса (использование H2O2).

4. Неселективность процесса.

5. Низкий выход целевого продукта.

Д.Бартоном с сотр. [18] предложены 4 окислительные системы (им присвоено наименование «Gif-системы») для окислительной функционализации углеводородов. Из четырех предложенных окислительных Gif-систем наиболее эффективная GifIV - состоит из трехъядерного Fe-комплекса состава Fe2+Fe23+O(OAc)6L3 (L=Py или H2O). Кроме того, система содержит пероксид водорода, AcOH как источник H+, Zn в качестве восстановителя и пиридин с 6.6% H2O в качестве растворителя. Gif-системы достаточно эффективны для окисления циклогексана в мягких условиях (20-40°C) (D.H.R.Barton, M.J.Gastiger, W.B.Motherwell. Заявка №2543542, Франция (1984) [18]; D.H.R.Barton, J.Boivin, M.Gastiger, J.Morzycki, R.S.Hay-Motherwell, W.B.Motherwell, N.Ozbalik, K.M.Schwartzentruber. J.Chem. Soc. Perkin Trans., Pt 1, N 6, 947-955 (1986) [19]; D.H.R.Barton, F.Halley, N.Ozbalik, M.Schmitt, E.Young, G.Balavoine. J.Am. Chem. Soc. V.111, N 18, 7144-7149 (1989) [20]:

Установлено, что Gif-системы позволяют получать более высокий выход продуктов окисления углеводородов по сравнению с другими аналогичными модельными системами и отличаются высокой региоселективностью. Оксигенирование в присутствии Gif-систем преимущественно проходит у вторичного C-атома углеводорода и по этой причине основными продуктами окисления углеводородов являются соответствующие кетоны.

Недостатки метода:

1. Труднодоступность катализатора.

2. Использование большого количества цинка и уксусной кислоты создает трудности для выделения конечных продуктов реакции.

3. Взрывоопасность процесса (использование H2O2).

4. Низкий выход целевого продукта.

5. Неселективность процесса.

В работе [L.Barloy, P.Battioni, D.Mansuy. J.Chem. Soc. Chem. Commun. N 19, 1365-1367 (1990)] [21] описан новый катализатор окисления, включающий в себя Mn-порфирин, нанесенный на монтмориллонит, который может быть использован в различных растворителях (CH2Cl2, CH3OH, H2O). Данный катализатор оказался достаточно эффективным при гидроксилировании насыщенных углеводородов с помощью йодозобензола.

Отфильтрованный после окончания реакции катализатор, промытый CH3OH или H2O, еще долго сохраняет свою активность в реакциях окисления алканов, поэтому окисление с его помощью можно проводить не только в хлористом метилене или ацетонитриле, но и в метаноле и в воде [21].

Недостатки метода:

1. Труднодоступность катализатора

2. Низкий выход целевого продукта

Осуществлено окисление циклогексана в водной среде, катализируемое порфириновым комплексом железа (III) в микрогетерогенных средах (А.Б.Сорокин, А.М.Хенкин, С.А.Маракушев, А.Е.Шилов, А.А.Штейман. Докл. АН СССР, т.279, №4, 939-941 (1984) [22]). Микрогетерогенные модельные системы включают в себя порфириновый комплекс железа, окислитель и структурирующий агент, образующий в водной среде мицеллы, липосомы или соединения включения. В качестве таких агентов выбраны димиристоилфосфатидилхолин, тритон Х-100, лаурилсульфат натрия, β-циклодекстрин и перметилированный β-циклодекстрин, а катализатором служит тетракис(n-гексадецилоксифенил)порфиринхлорид железа. Продуктом окисления циклогексана с помощью данной системы является циклогексанол. Окисление циклогексана в воде без использования структурирующих агентов практически не протекает. Комплекс железа в процессе реакции подвергается деструкции. При полной деструкции порфирина реакция прекращается. Лучшие результаты получены при использовании тритона Х-100. При использовании более устойчивого к окислению комплекса железо- (3+) тетракис(пентафторфенил)порфиринбромида в мицеллах тритона Х-100 выход циклогексанола составил 35%.

На основании сходства по трем признакам (исходный реагент - циклогексан, использование катализатора, присутствие воды, образование в результате реакции циклогексанола) за прототип взят метод окисления циклогексана в водной среде с помощью йодозобензола, катализируемое порфириновым комплексом железа (III) [22].

Прототип имеет следующие недостатки:

1. Труднодоступность катализатора.

2. Использование труднодоступных структурирующих агентов, в отсутствие которых реакция не идет.

3. Большой расход окислителя.

4. Низкий выход целевого продукта.

Авторами предлагается способ получения циклогексанола, не имеющий указанных недостатков.

Сущность способа заключается в окислении циклогексана с помощью бромноватистой кислоты (HOBr), которая в условиях реакции генерируется in situ из CBr4 и H2O под действием комплекса молибдена Mo(CO)6 при температуре 125-160°C в течение 4-6 часов, при мольном соотношении [Mo]: [циклогексан]: [CBr4]:[H2O]=1÷3:100:100:1500÷2000, предпочтительно 3:100:100:1500.

В оптимальных условиях при полной конверсии циклогексана выход циклогексанола составляет 85%.

Существенные отличия предлагаемого способа от прототипа.

1. Для получения циклогексанола окислением циклогексана используется система CBr4-H2O-Mo(CO)6, генерирующая in situ сильный окислитель - бромноватистую кислоту.

Преимущества предлагаемого метода.

1. Доступность и дешевизна исходных реагентов и катализатора.

2. Безопасность процесса из-за отсутствия высокореакционных окислителей.

3. Высокий выход целевого продукта.

4. Удешевление себестоимости и упрощение технологии в целом за счет уменьшения энерго- и трудозатрат.

ПРИМЕР 1. В микроавтоклав из нержавеющей стали емкостью 17 мл (или стеклянную ампулу, V=20 мл - результаты параллельных опытов практически не отличаются) под аргоном помещали 0.3 ммоль Mo(CO)6, 10 ммоль циклогексана, 10 ммоль CBr4 и 150-200 ммоль H2O (которая играет роль реагента и растворителя одновременно), автоклав герметично закрывали (ампулу запаивали) и нагревали при 140°C в течение 5 часов. После окончания реакции микроавтоклав (ампулу) охлаждали до ~20°C, вскрывали, реакционную массу экстрагировали эфиром (5 мл×3 р), отгоняли растворитель, остаток перегоняли в вакууме.

Выделенный циклогексанол имел т.кип. 49-50°C/5 Па. Спектр ЯМР 13C (CDCl3, δ, м.д.): 70.12 (C-1), 35.63 (C-2, C-6), 24.72 (C-3, C-5), 25.66 (C-4). Масс-спектр, m/z (Jотн, %): [M]+ 100 (2), 82 (20), 57 (100), 56 (36), 43 (44), 41 (34), 39 (25), 29 (16). Найдено, %: C 71.92; H 12.05. C6H12O. Вычислено, %: C 72.35; H 13.87; O 13.78.

Другие примеры, подтверждающие способ, приведены в таблице 1.

Таблица 1
Результаты опытов по синтезу циклогексанола окислением циклогексана с помощью H2O и CBr4 под действием Mo(CO)6
№№ п/п Мольное соотношение [Mo]:[циклогексан]:[CBr4]: [H2O] Температура, °C Время реакции, ч Выход циклогексанола, %
1 2 3 4 5
1. 3:100:100:1000 160 4 69
2. 3:100:100:1500 -«- -«- 80
3. 3:100:100:2000 -«- -«- 75
4. 3:100:100:1500 140 -«- 73
5. -«- -«- 5 80
6. -«- 125 4 81
7. -«- -«- 6 85

Способ получения циклогексанола формулы

каталитическим окислением циклогексана, отличающийся тем, что в качестве окисляющих агентов используют бромноватистую кислоту HOBr, генерированную in situ из четырехбромистого углерода (CBr4) и воды (Н2О) в присутствии молибденсодержащего катализатора Мо(СО)6 при температуре 125-160°С в течение 4-6 ч, при мольном соотношении [катализатор]:[циклогексан]:[CBr4]:[H2O]=1÷3:100:100:1500÷2000.



 

Похожие патенты:

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .

Изобретение относится к установкам, специально приспособленным для проведения химического взаимодействия жидкости с газообразной средой, а более конкретно к установкам каскадного окисления циклогексана кислородом воздуха в барботажных реакторах (на одной из основных технологических стадий производства капролактама и полиамидных пластмасс).

Изобретение относится к способу окисления циклических алканов окислительным агентом с получением продукта, в котором окисление проводят в ректификационной колонне, содержащей на нижнем конце кубовую зону, на верхнем конце головную зону и между кубовой и головной зонами реакционную зону, в реакционной зоне реакционную смесь поддерживают в состоянии кипения и окислительный агент вводят в реакционную зону, по меньшей мере, в двух частичных потоках, при этом покидающее реакционную зону, непрореагировавшее исходное сырье рециркулируют в реакционную зону, в качестве окислительного агента используют содержащий молекулярный кислород газ, а ниже реакционной зоны отбирают содержащую продукт реакционную смесь.
Изобретение относится к технологии окисления циклогексана воздухом с последующей обработкой продуктов окисления для разложения примеси циклогексилгидропероксида.

Изобретение относится к способу управления процессом получения циклогексанола или циклогексанона гидрированием фенола или бензола водородом в присутствии катализатора и разбавителя с последующей гидратацией в случае использования бензола в качестве исходного продукта.
Изобретение относится к способу окисления жидких углеводородов в барьерном разряде в плазмохимическом барботажном реакторе смесями кислорода с гелием, аргоном или азотом.

Изобретение относится к реактору, применяемому для проведения реакции окисления жидкости газом, содержащим кислород. .

Изобретение относится к усовершенствованному способу разложения гидропероксида с образованием смеси, содержащей соответствующие спирт и кетон, включающему стадии: а) добавления воды в количестве 0,5-20% в смесь, содержащую гидропероксид; b) удаления объема указанной воды таким способом, что вместе с водой удаляются водорастворимые примеси; с) удаления оставшейся воды таким способом, что в реакционной смеси остается не более чем 2% воды; и d) разложения указанного гидропероксида путем контактирования реакционной смеси с каталитическим количеством гетерогенного катализатора, содержащего золото, нанесенного на носитель.
Изобретение относится к способу получения высших жирных спиртов (ВЖС), которые широко применяют в табачной промышленности, при производстве моющих средств, пластификаторов, пенных стабилизаторов, присадок для смазочных масел, а также для производства косметических средств.

Изобретение относится к способу получения адамантанола-1 - ценного компонента смазочных масел, гидравлических и трансмиссионных жидкостей. .

Изобретение относится к способу производства жидких оксигенатов (кислородсодержащих органических соединений), в том числе метанола, С2-С4-спиртов, формальдегида, низших органических кислот или их смеси, прямым гомогенным окислением природного газа, и установке для его осуществления.

Изобретение относится к получению гидроксилированных алифатических соединений с использованием окислителя и катализатора окисления. .

Изобретение относится к способу производства метанола и установке для его осуществления. .

Изобретение относится к способу получения миртенола - душистого вещества и полупродукта для органического синтеза. .

Изобретение относится к способу получения трет-бутилового спирта, который может использоваться как растворитель, как высокооктановый компонент бензина, как сырье для получения МТБЭ и концентрированного изобутилена.

Изобретение относится к синтезу производных адамантана, которые находят применение в синтезе биологически активных соединений. .

Изобретение относится к синтезу функциональных производных адамантана, конкретно к способу получения 1-гидроксиадамантана, который может использоваться как полупродукт для получения биологически активных веществ, в частности, "ремантадина", и полимеров.
Наверх