Лазерный центратор для рентгеновского излучателя



Лазерный центратор для рентгеновского излучателя
Лазерный центратор для рентгеновского излучателя
Лазерный центратор для рентгеновского излучателя
Лазерный центратор для рентгеновского излучателя
Лазерный центратор для рентгеновского излучателя

 


Владельцы патента RU 2421949:

Маклашевский Виктор Яковлевич (RU)

Изобретение относится к неразрушающему контролю объектов с помощью рентгеновского излучения. Технический результат - устранение сбоев в его работе из-за паразитных световых бликов на поверхности полупрозрачного зеркала, а также появление технической возможности оценки соотношения размеров зоны просвечивания объекта рентгеновским излучением и кассеты с пленкой, используемой при радиографировании.

Для этого в лазерном центраторе для рентгеновского излучателя, содержащем корпус, в котором расположены лазерный дальномер, ось лазера которого параллельна продольной оси рентгеновского излучателя, два зеркала, первое из которых из оргстекла установлено на пересечении осей лазерного и рентгеновского пучков перпендикулярно образуемой ими плоскости под углом 45 градусов к оси лазера, а второе расположено на оси лазера под углом 45 градусов к ней, причем его центр находится на расстоянии А от центра первого зеркала, равном расстоянию от него до фокуса рентгеновской трубки по оси рентгеновского пучка, телевизионная система, состоящая из объектива, ПЗС-матрицы и монитора, при этом оптическая ось объектива проходит через центр второго зеркала и совпадает с перпендикуляром, проведенным из этого центра к оси лазера, перед объективом расположен светофильтр для повышения контраста изображений лазерных структур на объекте, а на оси лазера дальномера перпендикулярно к ней и симметрично относительно нее на расстоянии В от центра второго зеркала установлена кольцевая структура микролазеров числом N≥8, оптические оси которых наклонены к оси лазера дальномера под углами α/2 в плоскостях, образованных осями микролазеров и осью лазера и которые после отражения от первого зеркала формируют на объекте изображение кольцевой структуры лазерных пятен, размеры и форма которой соответствуют размеру и форме зоны, просвечиваемой рентгеновским излучением, ось лазера дальномера после отражения от первого зеркала совпадает с осью рентгеновского пучка и формирует на объекте лазерное пятно, совпадающее с точкой пересечения оси рентгеновского пучка с объектом и с центром кольцевой структуры лазерных пятен, формируемой кольцевой матрицей микролазеров, второе зеркало выполнено с центральным отверстием для прохода луча лазерного дальномера, кольцевая матрица микролазеров диаметром D установлена от центра второго зеркала на расстоянии B=D/tg(α/2), где α - угол расхождения пучка рентгеновских лучей, в центратор дополнительно введена прямоугольная матрица микролазеров размером К*Т, где К и Т - размеры радиографической пленки в кассете для радиографирования, эта матрица расположена на корпусе центратора симметрично относительно оси рентгеновского пучка, оптические оси микролазеров числом М≥8 параллельны друг другу и оси рентгеновского пучка и формируют на объекте прямоугольную структуру лазерных пятен размером К*Т, который не изменяется при изменении расстояния от объекта до центратора Д и с помощью которой можно судить о соотношении размеров зоны объекта, просвечиваемой рентгеновским излучением, и реальной зоны регистрации радиографических изображений, определяемой размерами применяемой радиографической пленки, причем для лучшего различения этой и кольцевой структуры лазерных пятен излучение микролазеров, формирующих прямоугольную структуру, может быть промодулировано с частотой ф≥1-10 герц. 1 ил.

 

Изобретение относится к области неразрушающего контроля объектов с помощью рентгеновского излучения. Известен центратор для рентгеновского излучателя, содержащий лазерный дальномер и телевизионную камеру, оптические оси которых параллельны оси пучка рентгеновского излучения, а также кольцевую матрицу микролазеров, формирующую на объекте изображение кольцевой структуры лазерных пятен, положение, размеры и форма которой совпадают с аналогичными геометрическими параметрами зоны, просвечиваемой рентгеновским излучением [1].

Недостатки данного центратора - наличие перед лазерным дальномером полупрозрачного зеркала, что вызывает сбои в его работе из-за паразитных световых бликов на поверхности этого зеркала, а также невозможность оценки соотношения размеров зоны просвечивания объекта рентгеновским излучением и кассеты с пленкой, используемой при радиографировании. Кроме того, в центраторе отсутствуют средства для измерения размеров дефектов поверхности объекта при ее контроле в видимом диапазоне спектра, а также для количественной оценки наклона поверхности объекта к оси рентгеновского пучка.

Цель изобретения - устранение этих недостатков.

Для этого в лазерном центраторе для рентгеновского излучателя, содержащем корпус, в котором расположены лазерный дальномер, ось лазера которого параллельна продольной оси рентгеновского излучателя, два зеркала, первое из которых из оргстекла установлено на пересечении осей лазерного и рентгеновского пучков перпендикулярно образуемой ими плоскости под углом 45 градусов к оси лазера, а второе расположено на оси лазера под углом 45 градусов к ней, причем его центр находится на расстоянии А от центра первого зеркала, равном расстоянию от него до фокуса рентгеновской трубки по оси рентгеновского пучка, телевизионная система, состоящая из объектива, ПЗС-матрицы и монитора, при этом оптическая ось объектива проходит через центр второго зеркала и совпадает с перпендикуляром, проведенным из этого центра к оси лазера, перед объективом расположен светофильтр для повышения контраста изображений лазерных структур на объекте, а на оси лазера дальномера перпендикулярно к ней и симметрично относительно нее на расстоянии В от центра второго зеркала установлена кольцевая структура микролазеров числом N≥8, оптические оси которых наклонены к оси лазера дальномера под углами α/2 в плоскостях, образованных осями микролазеров и осью лазера и которые после отражения от первого зеркала формируют на объекте изображение кольцевой структуры лазерных пятен, размеры и форма которой соответствуют размеру и форме зоны, просвечиваемой рентгеновским излучением, ось лазера дальномера после отражения от первого зеркала совпадает с осью рентгеновского пучка и формирует на объекте лазерное пятно, совпадающее с точкой пересечения оси рентгеновского пучка с объектом и с центром кольцевой структуры лазерных пятен, формируемой кольцевой матрицей микролазеров, второе зеркало выполнено с центральным отверстием для прохода луча лазерного дальномера, кольцевая матрица микролазеров диаметром D установлена от центра второго зеркала на расстоянии В=D/tg(α/2), где α - угол расхождения пучка рентгеновских лучей, в центратор дополнительно введена прямоугольная матрица микролазеров размером К*Т, где К и Т - размеры радиографической пленки в кассете для радиографирования, эта матрица расположена на корпусе центратора симметрично относительно оси рентгеновского пучка, оптические оси микролазеров числом М≥8 параллельны друг другу и оси рентгеновского пучка и формируют на объекте прямоугольную структуру лазерных пятен размером К*Т, которая не изменяется при изменении расстояния от объекта до центратора Д и с помощью которой можно судить о соотношении размеров зоны объекта, просвечиваемой рентгеновским излучением, и реальной зоны регистрации радиографических изображений, определяемой размерами применяемой радиографической пленки, причем для лучшего различения этой и кольцевой структуры лазерных пятен излучение микролазеров, формирующих прямоугольную структуру, может быть промодулировано с частотой ф>=1-10 герц, а фокусное расстояние F объектива телекамеры выбирается с учетом соотношения F<R*Zмин/S, где Zмин - минимальное расстояние от объекта до центратора в рабочем диапазоне изменений этих расстояний, S - размер ПЗС-матрицы телекамеры, R - диагональ листа радиографической пленки размером К*Т, а на экране монитора телевизионной системы расположена стандартная метрическая шкала с ценой деления С, которая в плоскости объекта равна Со=С*М, где М=Мо*Мт - масштаб изображения объекта на мониторе, Мо=F/Z - увеличение объектива телевизионной системы, Мт=H/S - телевизионное увеличение, F - фокусное расстояние объектива телекамеры, Z - текущее расстояние от центратора до объекта, Н - размер растра экрана монитора, S - размер ПЗС-матрицы телекамеры телевизионной системы, угол наклона поверхности объекта к оси рентгеновского пучка определяется соотношением α=arctg(Та/Т), где Та и Т - малая и большая оси эллиптического изображения кольцевой структуры матрицы микролазеров, деформированного за счет наклона объекта в заданном направлении.

Изобретение поясняется чертежами фиг.1а-1д, на которых представлены общая схема центратора (фиг.1а) и отдельные ее элементы.

Центратор 1 содержит корпус 2, в котором расположены первое зеркало 3 из оргстекла, второе зеркало 4 с центральным отверстием для прохода луча лазерного дальномера 6 [2], кольцевая матрица 5 микролазеров 13, светофильтр 7, объектив 8, ПЗС-матрица 9 и монитор 10 телевизионной системы со шкалой 15 на экране, рама 11 с прямоугольной матрицей микролазеров 14. Шкала 15 может поворачиваться в плоскости экрана монитора для проведения измерений в различных направлениях. На фиг.1б, в показано расположение микролазеров 13 и 14 в соответствующих матрицах. На фиг.1г представлена расчетная схема для выбора фокусного расстояния объектива. На фиг.1д представлен вид экрана монитора при совмещении изображений кольцевой и прямоугольной матриц микролазеров (принято К=Т) на объекте 12. Микролазеры 13 и 14 могут быть идентичными или с различающимися спектральными, модуляционными и энергетическими характеристиками в зависимости от оптических характеристик объекта 12 для обеспечения достаточного контраста изображений соответствующих структур лазерных пятен. В качестве шкалы 15 применена стандартная метрическая шкала с ценой деления С=1 мм, нанесенная на прозрачную подложку.

Лазерный центратор работает следующим образом.

Оператор совмещает кольцевую структуру лазерных пятен с подлежащим контролю участком объекта и производит визуальный контроль его поверхности. Микролазеры прямоугольной матрицы при этом могут быть отключены для устранения мешающих этому процессу факторов. Затем производят измерение расстояния от объекта до центратора с помощью лазерного дальномера. Включают микролазеры прямоугольной матрицы и производят оценку соответствия размеров пленки и зоны, просвечиваемой рентгеновским излучением. В случае необходимости производят коррекцию расположения центратора относительно объекта, добиваясь максимального заполнения площади пленки полезной информацией, т.е. полного вписания кольцевой структуры лазерных пятен в прямоугольную структуру лазерных пятен. Затем производят повторное измерение расстояния от объекта до центратора с помощью лазерного дальномера и приступают непосредственно к выполнению процедур радиографического контроля. Перед проведением радиографического контроля возможно выполнение операций по измерению размеров дефектов и/или конструктивных элементов на поверхности объекта, измерение координат их расположения и т.п. Оценку перпендикулярности поверхности объекта к оси пучка рентгеновского излучения производят по степени эллиптичности изображения кольцевой матрицы лазерных пятен на поверхности объекта, которая также может оцениваться с помощью шкалы 15 на экране монитора. Угол α наклона поверхности объекта к оси рентгеновского пучка в заданном направлении определяется формулой α=arccos(Ta/T), где Та и Т - соответственно малая и большая оси эллипса в изображении деформированной кольцевой структуры лазерных пятен.

Приведенные выше соотношения между основными геометрическими параметрами оптических элементов центратора с фокусным расстоянием объектива F, размером матрицы S, диагональю прямоугольной матрицы R и расстоянием от объекта до центратора Z иллюстрируются фиг.1а и не нуждаются в дополнительных пояснениях. Заметим, что угол поля зрения объектива W=2arctg(A/2F), что также понятно из фиг.1а [3]. На фиг.1г показаны подобные треугольники ОАВ и ОЕП, отношение высот которых пропорционально отношению их оснований, т.е. R/S=Zмин/F, откуда следует F≤R*Zмин/S. Выполнение этого условия обеспечивает нахождение изображения прямоугольной матрицы микролазеров в поле зрения объектива телевизионной системы во всем диапазоне изменений расстояния от центратора до объекта, начиная с его минимального значения. При этом фокусное расстояние объектива считается значительно меньше этого расстояния, т.е. F<<L, что практически всегда выполняется на практике, так как обычно Z≥3 м, a F≤50=100 мм. На фиг.1е приведена схема определения угла наклона поверхности объекта к оси рентгеновского пучка по степени эллиптичности изображения кольцевой структуры микролазеров, деформированной за счет наклона объекта к оси рентгеновского пучка.

Источники информации

1. Патент РФ №2237984. Лазерный центратор для рентгеновского излучателя.

2. Лазерный дальномер «ДИСТО», проспект фирмы LEICA, Австрия.

3. Справочник конструктора оптико-механических приборов. Л.: Машиностроение, 1986, 680 стр.

Лазерный центратор для рентгеновского излучателя, содержащий корпус, в котором расположены лазерный дальномер, ось лазера которого параллельна продольной оси рентгеновского излучателя, два зеркала, первое из которых из оргстекла установлено на пересечении осей лазера и пучка рентгеновских лучей перпендикулярно образуемой ими плоскости под углом 45° к оси лазера, а второе расположено на оси лазера под углом 45° к ней в точке, находящейся на расстоянии А от центра первого зеркала, равном расстоянию от этого центра до фокуса рентгеновской трубки по оси рентгеновского пучка, телевизионная система, состоящая из объектива, оптическая ось которого совпадает с перпендикуляром, проведенным из центра второго зеркала в плоскости, образуемой осями лазера и продольной осью рентгеновского излучателя, ПЗС-матрицы и монитора, светофильтр для контрастирования изображений лазерных структур на объекте, расположенный перед объективом, кольцевая матрица из N≥8 микролазеров, оптические оси которых наклонены к оси лазера под углом а/2 в плоскостях, образованных осями микролазеров и лазера дальномера, где а - угол расхождения рентгеновского пучка, эти микролазеры расположены симметрично относительно оси лазера дальномера на окружности диаметра Д на расстоянии В от центра второго зеркала и формируют на объекте после отражения от первого зеркала кольцевую структуру лазерных пятен, размеры и форма которой соответствуют размеру и форме зоны объекта, просвечиваемой рентгеновским излучением, и центр которой совпадает с точкой пересечения оси рентгеновского пучка с объектом, подсвечиваемой лазером дальномера, отличающийся тем, что второе зеркало выполнено с центральным отверстием для прохода луча лазера дальномера, кольцевая матрица микролазеров установлена на расстоянии B=Д/2tg(a/2), в центратор дополнительно введена прямоугольная матрица из М≥8 микролазеров, расположенных на корпусе центратора симметрично относительно оси рентгеновского пучка, размер матрицы К×Т соответствует размерам применяемой радиографической пленки, оптические оси микролазеров прямоугольной матрицы параллельны друг другу и оси рентгеновского пучка, и с помощью этих микролазеров на объекте формируется прямоугольная структура лазерных пятен, размер и форма которой остаются неизменными при изменении расстояния от объекта до центратора, что позволяет судить о соотношении размеров зоны объекта, просвечиваемой рентгеновским излучением и отмеченной кольцевой структурой лазерных пятен и реально засвечиваемого при этом участка поверхности пленки, при этом фокусное расстояние F объектива телевизионной системы выбирается с учетом соотношения F≤R·Zмин/a, где R - диагональ прямоугольного листа пленки размером К×Т; Zмин - минимальное расстояние от объекта до центратора в рабочем диапазоне изменения этого расстояния, что обеспечивает постоянное нахождение прямоугольной матрицы лазерных пятен на объекте в поле зрения телевизионной системы, на экране монитора расположена метрическая шкала на прозрачной подложке, установленная с возможностью разворотов в плоскости экрана монитора, цена деления шкалы Со в плоскости объекта определяется соотношением Со=С·М, где С - цена деления шкалы в плоскости экрана монитора; М=Мо·Мт, Mo=F/Z, Mт=H/S, Н - размер растра монитора; Z - текущее расстояние от центратора до объекта, измеренное лазерным дальномером; S - размер растра ПЗС-матрицы телекамеры телевизионной системы, угол наклона поверхности объекта к оси рентгеновского пучка определяют по соотношению a=arctg(Та/Т), где Та и Т - соответственно малая и большая оси эллиптического изображения кольцевой структуры микролазеров, деформированного за счет наклона объекта к оси рентгеновского пучка.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных, отраслях машиностроения.

Изобретение относится к формированию рентгеновских изображений. .

Изобретение относится к рентгенотехнике, более точно изобретение касается рентгеновского аппарата и способа управления им. .

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий радиационным методом в авиакосмической промышленности и других отраслях машиностроения.

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к рентгенолитографии, а именно к устройству «рисования» топологических рисунков, пространственно сформированным пучком экспонирующего рентгеновского излучения.

Изобретение относится к области неразрушающего контроля объектов с помощью рентгеновского излучения. .

Изобретение относится к области аналитической химии и технической физики, а также к различным областям науки и техники для идентификации таких материалов, как, например, индивидуальные органические соединения, органические полимеры и изделия из них, соединения элементов начала периодической системы (от Н до F), для количественного анализа двух-трех компонентных систем на основе этих элементов, для определения соотношения С:Н в углеводородах, а также для сепарации материалов, состоящих из легких элементов, например, в качестве датчика сепаратора угля на ленте транспортера.

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения.

Изобретение относится к неразрушающему контролю с использованием рентгеновского излучения и может быть применено для контроля материалов и изделий в различных отраслях машиностроения

Изобретение относится к области радиационных технологий и может быть использовано для облучения жидких объектов, в частности донорской крови и ее компонентов

Изобретение относится к рентгеновской технике, в том числе к медицинской, а именно к устройствам для контроля технических характеристик цифровых рентгеновских аппаратов

Изобретение относится к области электротехники, в частности к конструкции высоковольтного трансформатора, который содержит первичную плоскую обмотку (4, 8), вторичную обмотку (10) типа литцендрат, сердечник и катушку, имеющую множество прорезей, в которых намотана обмотка типа литцендрат, при этом поверхности плоских обмоток упираются в плоские поверхности сердечника

Изобретение относится к медицинской технике, а именно к рентгеновским аппаратам, и может быть использовано для визуального контроля облучаемой рентгеновским аппаратом зоны на теле пациента

Изобретение относится к медицинской технике, а именно к рентгеновским сканерам для обследований пациентов
Изобретение относится к области рентгенографии быстропротекающих процессов

Изобретение относится к области рентгенотехники и может быть использовано в медицине, дефектоскопии, микроскопии
Наверх