Способ картографирования земной поверхности бортовой радиолокационной станцией



Способ картографирования земной поверхности бортовой радиолокационной станцией
Способ картографирования земной поверхности бортовой радиолокационной станцией

 


Владельцы патента RU 2423724:

Открытое акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" (RU)

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Способ основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли. Достигаемый технический результат - высокое разрешение по азимуту при картографировании земной поверхности в заданном секторе углов, в том числе и по курсу летательного аппарата, перемещение луча антенны от границы заданного сектора углов по азимуту. Способ осуществляется при изменении курса летательного аппарата от начального значения Фо с соблюдением условия |Фтектек|≥φ3 где Фтек и Фтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. При достижении углового положения луча антенны значения ≥Ф0, например равного Ф0+φ, осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до начального значения Ф0 при соблюдении условия |Фтектек|≥φ. 2 ил.

 

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. Известен способ картографирования земной поверхности бортовой радиолокационной станцией (БРЛС), основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении (сканировании) луча антенны в заданном секторе углов по азимуту и формировании радиолокационного изображения поверхности Земли (Многофункциональные радиолокационные системы под ред. Б.Г.Татарского, М., ООО «Дрофа», 2007 г., стр.23, 24, 167-174). Такой способ формирования радиолокационного изображения земной поверхности называется «Картографированием реальным лучом».

Однако известный способ картографирования обеспечивает невысокое разрешение по угловой координате, которое определяется шириной главного луча диаграммы направленности антенны по азимуту, равной как правило 1…3°.

Наиболее близким по технической сущности является способ картографирования земной поверхности (Многофункциональные радиолокационные системы под ред. Б.Г.Татарского, М., ООО «Дрофа», 2007 г., стр.169), основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении (сканировании) луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли. Синтезирование апертуры антенны позволяет искусственно более чем на порядок обострить луч, используя зависимость доплеровского смещения частоты отраженного сигнала от углового положения отражающего элемента поверхности, что обеспечивает разделение целей, находящихся внутри луча (Многофункциональные радиолокационные системы под ред. Б.Г.Татарского, М., ООО «Дрофа», 2007 г., стр.24,25,174-195). Однако синтезирование апертуры антенны в зоне углов порядка ±10° в горизонтальной плоскости (по азимуту) относительно строительной оси (курса) летательного аппарата представляет большие сложности ввиду незначительной разницы в этой зоне доплеровского смещения частоты отраженного сигнала. Этот недостаток не позволяет произвести картографирование земной поверхности с высоким разрешением в указанной зоне, что в свою очередь не дает возможности использовать вооружение летательного аппарата при работе по объектам, расположенным в «слепой зоне» по его курсу.

Техническим результатом предлагаемого способа является обеспечение высокого разрешения по азимуту при картографировании земной поверхности в заданном секторе углов, в том числе и по курсу летательного аппарата.

Сущность изобретения состоит в том, что способ картографирования земной поверхности БРЛС основан на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли.

Новыми признаками заявляемого способа является то, что перемещение луча антенны от границы заданного сектора углов по азимуту осуществляется при изменении курса летательного аппарата от начального значения Ф0 с соблюдением условия |Фтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. При достижении углового положения луча антенны значения ≥Ф0, например равного Ф0+φ, осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до начального значения Ф0 при соблюдении условия |Фтектек|≥φ.

На фиг.1 представлена радиолокационная станция для осуществления способа.

На фиг.2 показан процесс построения карты при перемещении луча антенны и изменении курса летательного аппарата:

где а) заданный сектор картографирования с начальным значением курса летательного аппарата Фо и начальным положением луча антенны, соответствующем границе заданного сектора картографирования;

б) часть карты, построенная при перемещении луча антенны до значения Ф0+φ и изменении курса летательного аппарата до значения Ф10+2φ;

в) часть карты и положение луча антенны после переброса до другой границы заданного сектора картографирования;

г) карта, построенная во всем заданном секторе картографирования, при изменении курса летательного аппарата и перемещении луча антенны;

д) φ - минимальное значение угла отклонения луча антенны от курса летательного аппарата, при котором обеспечивается синтезирование апертуры антенны.

Способ картографирования земной поверхности может быть реализован при работе радиолокационной станции, состоящей из бортовой цифровой вычислительной машины (БЦВМ) 1, первый выход которой соединен с входом блока управления лучом 2, а второй выход - с входом передатчика 4, выход которого соединен со вторым входом антенны 3, первый вход которой соединен с выходом блока управления лучом антенны 2, причем выход антенны 3 подключен к входу приемника 5, выход которого соединен с блоком формирования радиолокационного изображения земной поверхности 6, выход которого соединен с индикатором 7.

Антенна 3 излучает в пространство импульсы сигнала, поступающие на ее 2 вход с выхода передатчика 4, по командам, поступающим на его вход со второго выхода БЦВМ 1. При перемещении луча антенны 3 по командам управления, поступающим на ее первый вход с блока управления лучом 2, управляемым с 1 выхода БЦВМ 1, производится облучение земной поверхности. Отраженные от нее сигналы принимаются антенной 3. С выхода антенны 3 сигналы поступают на вход приемника 5. С выхода приемного устройства сигналы поступают в блок формирования радиолокационного изображения земной поверхности 6, а с его выхода - на индикатор 7.

Режим картографирования включается подачей на БЦВМ 1 команды «Карта» из кабины летательного аппарата. При наличии этой команды в БЦВМ 1 производится расчет начального положения луча антенны для его установки на границу (например, левую) заданного сектора углов по азимуту (фиг.2а). Рассчитанные в БЦВМ 1 координаты положения луча антенны передаются с ее 1 выхода на блок управления лучом (БУЛ) 2, в котором вырабатываются соответствующие команды управления лучом антенны 3. После начальной установки луча антенны 3 начинается его перемещение в азимутальной плоскости с одновременным изменением курса летательного аппарата от начального значения Ф0 при выполнении условия |Фтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны. Требуемая скорость перемещения луча антенны 3 определяется командами управления, поступающими с 1 выхода БЦВМ 1 на вход БУЛ 2, а управление курсом летательного аппарата осуществляется сигналами, поступающими с 3 выхода БЦВМ 1 на вход пилотажно-навигационного комплекса (ПНК) летательного аппарата. При достижении углового положения луча антенны значения ≥Ф0, например значения Ф0+φ, а курса летательного аппарата значения Ф10+2φ (фиг.2б) осуществляется мгновенный переброс луча в азимутальной плоскости до другой границы заданного сектора (фиг.2в). После этого продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Ф0 при соблюдении условия |Фтектек|≥φ. При достижении курса летательного аппарата значения Ф0 луч антенны достигает значения Ф0+φ (фиг.2г), при котором процесс картографирования заканчивается. Как видно из фиг.2, в начале процесса картографирования (фиг.2а) и в его конце (фиг.2г) курс летательного аппарата имеет одинаковое значение, равное Ф0, но за счет изменения курса в процессе перемещения луча антенны при картографировании обеспечивается условие, при котором положение луча антенны отличается от текущего курса на величину φ, т.е. выполняется условие |Фтектек|≥φ.

В приемнике 5 осуществляется синтезирование апертуры антенны, основанное на использовании различия доплеровского смещения сигналов, отраженных от земной поверхности в пределах главного луча антенны 3. С выхода приемника 5 сигналы через блок формирования радиолокационного изображения земной поверхности 6 поступают на индикатор 7, где осуществляется отображение карты поверхности Земли в заданном секторе углов по азимуту.

Вследствие выполнения в процессе изменения курса летательного аппарата и перемещения луча антенны условия |Фтектек|≥φ синтезирование апертуры антенны осуществляется в пределах всего заданного сектора углов по азимуту. Это обеспечивает высокую разрешающую способность по азимуту в пределах всего заданного сектора картографирования, в том числе и по курсу летательного аппарата, что дает возможность использования высокоточного оружия, находящегося на его борту.

Предлагаемый режим картографирования целесообразно реализовывать, используя режим автоматического управления летательным аппаратом с помощью системы автоматического управления.

Способ картографирования земной поверхности бортовой радиолокационной станцией (БРЛС), основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли, отличающийся тем, что перемещение луча антенны от границы заданного сектора углов по азимуту, осуществляется при изменении курса летательного аппарата от начального значения Ф0 с соблюдением условия |Фтектек|≥φ, где Фтек и φтек - текущие значения курса летательного аппарата и луча антенны соответственно, φ - минимальное значение отклонения луча антенны от курса летательного аппарата, необходимое для синтезирования апертуры антенны, а при достижении углового положения луча антенны значения ≥Ф0 осуществляется его мгновенный переброс в азимутальной плоскости до другой границы заданного сектора, после чего продолжается перемещение луча антенны по азимуту в противоположном направлении с изменением курса летательного аппарата до исходного значения Ф0 при соблюдении условия |Фтектек|≥φ.



 

Похожие патенты:

Изобретение относится к области исследования радиолокационных характеристик объекта и получения его радиолокационных изображений (РЛИ) при использовании многочастотного импульсного зондирования и синтезирования апертуры антенны.

Изобретение относится к бортовым радиолокационным станциям с синтезированной апертурой антенны, предназначенным для формирования радиолокационного изображения (РЛИ) контролируемого участка земной поверхности в координатах дальность-азимут по курсу движения летательного аппарата (ЛА) с малой скоростью (маловысотный полет) или с зависшего вертолета.

Изобретение относится к области радиовидения и может быть применено для обнаружения предметов, скрытых под одеждой людей, проходящих досмотр. .

Изобретение относится к радиоизмерительной технике и может быть использовано при исследовании радиолокационных характеристик объекта и получении его радиолокационного изображения при многочастотном импульсном зондировании.

Изобретение относится к области радиовидения и может быть применено для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости.

Изобретение относится к бортовым системам пассивной и активной радиолокации миллиметрового диапазона, работающим совместно при наблюдении и распознавании неподвижных объектов на поверхности.

Изобретение относится к пассивной радиолокации, а именно к радиотеплолокационным станциям (РТЛС) наблюдения за поверхностью и воздушной обстановкой на базе подвижных или неподвижных носителей РТЛС со сканирующими совмещенными по центру антеннами радиометрических каналов с различными характеристиками диаграмм направленности антенн (ДН).

Изобретение относится к области космонавтики, а именно к обработке изображения Земной поверхности и передаче полученной информации на Землю, и предназначено для приема данных от бортовой информационной аппаратуры космического аппарата (КА), предварительной обработки этой информации и передачи преобразованной информации на пункты приема информации

Изобретение относится к летательным аппаратам с радиолокационной аппаратурой для дистанционного зондирования земной (морской) поверхности

Изобретение относится к устройству радара формирования подповерхностного изображения, содержащему узел передачи и узел приема, узел передачи является выполненным с обеспечением возможности передавать первый радиоволновый сигнал в лепестке на выбранный участок земли под выбранным углом места к участку земли

Изобретение относится к области сельского хозяйства, а именно к технологиям точного земледелия

Изобретение относится к области локации и может быть использовано в радиолокации, в акустической локации, в гидролокации, в оптической локации, включая лазерную локацию, для обнаружения различных объектов, измерения их координат и параметров движения, а также для контроля состояния водной среды, земной и водной поверхности, воздушного пространства

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости. Достигаемый технический результат - упрощение системы радиовидения, увеличение ее быстродействия и надежности. Указанный результат достигается за счет того, что оптическая система переносит в предметную плоскость излучения всех элементов объекта, которые модулируются различными между собой частотами и амплитудами, при этом модулированное излучение преобразуется в электрический сигнал, который разделяется на составляющие, каждая из которых представляет собой суммарный сигнал, принятый от элементов, излучения которых модулированы одинаковыми частотами. Для каждой составляющей формируется уравнение, состоящее из суммы произведений коэффициентов, пропорциональных амплитудам модулирующих функций на неизвестные яркости элементов. Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений. Решениями этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение. 1 ил.

Заявляемые изобретения могут быть использованы в навигационных, пеленгационных, локационных средствах для определения местоположения источников радиоизлучений (ИРИ) с летно-подъемного средства (ЛПС), в частности беспилотного летательного аппарата (БЛА). Достигаемый технический результат - сокращение временных затрат на определение координат ИРИ в условиях, когда налагаются ограничения на габаритные размеры пеленгаторной антенны. Технический результат достигается благодаря предварительному периодическому определению направления на ИРИ с помощью угломерно-дальномерного способа местоопределения для корректирования маршрута полета ЛПС с последующим использованием дальномерного способа местоопределения для высокоточного определения координат ИРИ на основе использования окружностей Апполония. Устройство определения координат ИРИ содержит двухканальный фазовый интерферометр, восемь вычислителей, три запоминающих устройства, радионавигатор, устройство угловой ориентации ЛПС, счетчик импульсов, делитель, блок управления, пороговое устройство, блок статической обработки, шесть входных установочных шин, две выходные шины, определенным образом соединенные между собой. 2 н.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех. Достигаемый технический результат изобретения - устранение формирования ложного сигнала картографирования по двум (или более) близкорасположенным целям при сохранении качества картографирования пассивных помех. Указанный результат достигается тем, что в устройство-прототип, содержащее обнаружитель сигналов, два логических элемента "И", два устройства расширения строба по дальности, счетчик целей, пороговое устройство, вводятся оперативное запоминающее устройство, линия задержки, третий логический элемент "И", устройство ранжирования, умножитель и второе пороговое устройство с соответствующими связями. 4 ил.

Изобретение относится к радиолокационной технике, в частности к бортовым радиолокационным станциям (РЛС) воздушных судов, применяющим метод синтезирования апертуры антенны. Достигаемый технический результат изобретения - сокращение времени формирования радиолокационного изображения (РЛИ). Заявленный способ заключается в объединении радиолокационных изображений разнесенных по азимуту К парциальных кадров, полученных посредством излучения когерентного импульсного зондирующего сигнала, облучения антенной РЛС парциальных участков поверхности, аналого-цифрового преобразования принятых сигналов, формировании двумерных массивов оцифрованных принятых сигналов путем их распределения по каналам дальности и периодам излучения и определенной цифровой обработке сформированных двумерных массивов. При этом облучение антенной РЛС К парциальных участков поверхности и суммирование амплитуд элементов разрешения N РЛИ производится скользящим способом, причем величина азимутального шага скольжения диаграммы направленности антенны РЛС равна или близка к ее азимутальной полуширине, а сложение амплитуд сигналов N РЛИ, N=3, 4, производится поэлементно в массивах размером M/2N-2, где M - число формируемых азимутальных элементов, со скольжением массивов суммируемых элементов на шаг M/2N-2. 2 ил.
Наверх