Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением



Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением
Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением

 


Владельцы патента RU 2504800:

Федеральное государственное бюджетное учреждение науки Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук (RU)

Изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в миллиметровом диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости. Достигаемый технический результат - упрощение системы радиовидения, увеличение ее быстродействия и надежности. Указанный результат достигается за счет того, что оптическая система переносит в предметную плоскость излучения всех элементов объекта, которые модулируются различными между собой частотами и амплитудами, при этом модулированное излучение преобразуется в электрический сигнал, который разделяется на составляющие, каждая из которых представляет собой суммарный сигнал, принятый от элементов, излучения которых модулированы одинаковыми частотами. Для каждой составляющей формируется уравнение, состоящее из суммы произведений коэффициентов, пропорциональных амплитудам модулирующих функций на неизвестные яркости элементов. Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений. Решениями этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение. 1 ил.

 

Настоящее изобретение относится к области радиовидения и может быть применено: для обнаружения предметов в ММ диапазоне волн под одеждой человека, в таможенном контроле грузов, в радиоастрономии для картографирования области неба и протяженных небесных объектов, в дистанционном зондировании земной поверхности, в охранных системах, работающих в условиях плохой видимости.

К настоящему времени известны способы формирования радиоизображений: с помощью фокальной двумерной матрицы приемников, с использованием многоэлементного интерферометра, с помощью фазированных матриц [1].

Перечисленные способы реализуются сложными приемными системами, состоящими из множества элементов, что снижает надежность систем, а разброс параметров элементов, обусловленный внешними факторами и технологией их изготовления, влияет на качество радиоизображений.

Наиболее близким аналогом является способ формирования радиопортрета объекта одним детектором, реализующимся сканированием объекта вращающимся рупором, принимающим от элементов объекта излучение, модулированное функциями с различными для каждого элемента параметрами (частотами). Принятый сигнал разделяется на составляющие, соответствующие излучению каждого элемента и преобразуется в оптическое изображение [2].

К недостатку способа можно отнести присутствие в нем элемента механического сканирования (вращающийся рупор), что снижает быстродействие и надежность устройства. Снижение надежности обусловлено тем, что для соединения вращающегося рупора с неподвижной частью устройства требуются сложные стыковочные приспособления.

Технический результат заключается в том, что упрощается конструкция системы радиовидения, увеличивается ее быстродействие и надежность.

Указанный технический результат в способе формирование радиопортрета объекта методом параллельной обработки с частотным разделением достигается тем, что оптическая система переносит в предметную плоскость излучения всех элементов объекта, которые модулируются различными между собой частотами и амплитудами.

Модулированное излучение преобразуются в электрический сигнал, который разделяется на сигналы, каждый из них представляет собой суммарный сигнал, принятый от элементов, излучения которых модулированы одинаковыми частотами. Для каждого такого сигнала формируется уравнение, состоящие из суммы произведений коэффициентов, пропорциональных амплитудам, модулирующих функций на неизвестные яркости элементов. Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений. В результате решения этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение.

Способ может быть реализован устройством, схема которого показана на фиг.1, где (1) - элементы наблюдаемого объекта, (2) - объект, (3) - оптическая система (антенна), (4, 5) - модулятор, (6) - рупор, (7) - детектор, (8) - частотный фильтр, (9) - вычислительное устройство.

Излучение всех элементов (1) объекта (2) принимается оптической системой (3) и переносится в предметную плоскость, где расположен модулятор (позиции 4, 5), выполненный в виде двух, установленных на одной оси, дисков с прорезями. В диске (4) прорези прозрачные, а в диске (5) закрыты поглотителями излучения с различными межу собой коэффициентами поглощения (на фиг.1 обозначены символами A1, А2, A3,…, Ak). Сделаны прорези с постоянным угловым шагом и расположены на концентрических окружностях разного диаметра, показанных штриховыми линиями на диске (5) (см. фиг.1). Количество прорезей на разных окружностях различно между собой. На фиг.1 они показаны только на одной окружности. Диски вращаются относительно оси О-О по направлению, указанному стрелкой. Скорости их вращения различны между собой настолько, что диск (4) можно считать неподвижным в течение периода обращения диска (5). Это необходимо для того, чтобы обеспечить просмотр затененных элементов объекта.

Амплитудная и частотная модуляция реализуется вращением диска (5). Излучения, прошедшие через прорези, расположенные на различных окружностях будут модулированы разными частотами, а прошедшие через прорези расположенные на одной окружности будут модулированы одинаковыми частотами и различными между собой амплитудами.

Модулированное излучение принимается рупором (6), передается на детектор (7), преобразуется им в электрический сигнал, который разделяется частотным фильтром (8) на составляющие, каждая из них представляет собой суммарный сигнал, принятый от элементов, излучения которых модулировано одинаковыми частотами. Разделенный сигнал параллельно поступает на вычислительное устройство (9), формирующее для каждой составляющей уравнение,

где: А1 А2, А3,……, Ak - известные коэффициенты ослабления

излучения, х1 х2, х3,...., xk - яркости элементов объекта, k - количество элементов, Sk суммарный сигнал.

Уравнения, сформированные в течение времени наблюдения, объединяются в системы уравнений {2}. Решениями этих систем определяются яркости элементов объекта, по которым строится его оптическое изображение.

Уравнения системы {2} формируются последовательно в течение периода обращения диска (5). На фиг.1 показано его положение при формировании первого уравнения. Время формирования одного уравнения равно промежутку времени, за который диск (5) поворачивается на угол а. По истечении этого промежутка будет сформировано первое уравнение и начнет формироваться второе, по завершении его формирования начнет формироваться третье, и так далее, пока диск (5) не сделает полный оборот.

Открытие затененных элементов объекта обеспечивается вращением диска (4). Формирование всех систем уравнений завершится в течение времени, за которое он повернется на угол р.

Таким образом, предлагаемое изобретение позволяет упростить систему радиовидения и увеличить ее быстродействие.

Литература:

1. В.А. Годунов, А.Ю. Зражевский, М.Т. Смирнов, В.С. Аблязов, А.А. Халдин, А.Е. Максимов, В.П. Нестеров. Радиотепловые поляризационные портреты объектов и покровов в ММ диапазоне волн. // 2-ая Всероссийская научная конференция «Дистанционное зондирование земных покровов и атмосферы аэрокосмическими средствами». Сб. докладов, Санкт-Петербург, 2004, т.1, с.56-59.

2. Патент на изобретение №2382382 от 04.02.2008, МПК G01S 13/89.

Способ формирования радиопортрета объекта методом параллельной обработки с частотным разделением, заключающийся в приеме неподвижной антенной энергии, отраженной или излученной элементами объекта, модуляции различными частотами принятого излучения, отличающийся тем, что принятое от элементов объекта излучение дополнительно модулируют различными между собой амплитудами, модулированное по частоте и амплитуде излучение преобразуют в электрический сигнал, который разделяют на составляющие, отличающиеся друг от друга частотой модуляции, формируют для каждой составляющей уравнение, состоящее из суммы произведений коэффициентов ослабления излучения, пропорциональных амплитудам модулирующих функций, на неизвестные яркости элементов объекта, уравнения, сформированные в течение времени наблюдения, объединяют в системы уравнений, решением которых определяют яркости элементов объекта, по которым строят его оптическое изображение.



 

Похожие патенты:

Изобретение относится к области локации и может быть использовано в радиолокации, в акустической локации, в гидролокации, в оптической локации, включая лазерную локацию, для обнаружения различных объектов, измерения их координат и параметров движения, а также для контроля состояния водной среды, земной и водной поверхности, воздушного пространства.

Изобретение относится к области сельского хозяйства, а именно к технологиям точного земледелия. .

Изобретение относится к устройству радара формирования подповерхностного изображения, содержащему узел передачи и узел приема, узел передачи является выполненным с обеспечением возможности передавать первый радиоволновый сигнал в лепестке на выбранный участок земли под выбранным углом места к участку земли.

Изобретение относится к летательным аппаратам с радиолокационной аппаратурой для дистанционного зондирования земной (морской) поверхности. .

Изобретение относится к области космонавтики, а именно к обработке изображения Земной поверхности и передаче полученной информации на Землю, и предназначено для приема данных от бортовой информационной аппаратуры космического аппарата (КА), предварительной обработки этой информации и передачи преобразованной информации на пункты приема информации.

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах. .

Изобретение относится к области исследования радиолокационных характеристик объекта и получения его радиолокационных изображений (РЛИ) при использовании многочастотного импульсного зондирования и синтезирования апертуры антенны.

Изобретение относится к бортовым радиолокационным станциям с синтезированной апертурой антенны, предназначенным для формирования радиолокационного изображения (РЛИ) контролируемого участка земной поверхности в координатах дальность-азимут по курсу движения летательного аппарата (ЛА) с малой скоростью (маловысотный полет) или с зависшего вертолета.

Заявляемые изобретения могут быть использованы в навигационных, пеленгационных, локационных средствах для определения местоположения источников радиоизлучений (ИРИ) с летно-подъемного средства (ЛПС), в частности беспилотного летательного аппарата (БЛА). Достигаемый технический результат - сокращение временных затрат на определение координат ИРИ в условиях, когда налагаются ограничения на габаритные размеры пеленгаторной антенны. Технический результат достигается благодаря предварительному периодическому определению направления на ИРИ с помощью угломерно-дальномерного способа местоопределения для корректирования маршрута полета ЛПС с последующим использованием дальномерного способа местоопределения для высокоточного определения координат ИРИ на основе использования окружностей Апполония. Устройство определения координат ИРИ содержит двухканальный фазовый интерферометр, восемь вычислителей, три запоминающих устройства, радионавигатор, устройство угловой ориентации ЛПС, счетчик импульсов, делитель, блок управления, пороговое устройство, блок статической обработки, шесть входных установочных шин, две выходные шины, определенным образом соединенные между собой. 2 н.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к радиолокации и может быть использовано в радиолокационных станциях для улучшения обнаружения радиолокационных сигналов на фоне пассивных помех. Достигаемый технический результат изобретения - устранение формирования ложного сигнала картографирования по двум (или более) близкорасположенным целям при сохранении качества картографирования пассивных помех. Указанный результат достигается тем, что в устройство-прототип, содержащее обнаружитель сигналов, два логических элемента "И", два устройства расширения строба по дальности, счетчик целей, пороговое устройство, вводятся оперативное запоминающее устройство, линия задержки, третий логический элемент "И", устройство ранжирования, умножитель и второе пороговое устройство с соответствующими связями. 4 ил.

Изобретение относится к радиолокационной технике, в частности к бортовым радиолокационным станциям (РЛС) воздушных судов, применяющим метод синтезирования апертуры антенны. Достигаемый технический результат изобретения - сокращение времени формирования радиолокационного изображения (РЛИ). Заявленный способ заключается в объединении радиолокационных изображений разнесенных по азимуту К парциальных кадров, полученных посредством излучения когерентного импульсного зондирующего сигнала, облучения антенной РЛС парциальных участков поверхности, аналого-цифрового преобразования принятых сигналов, формировании двумерных массивов оцифрованных принятых сигналов путем их распределения по каналам дальности и периодам излучения и определенной цифровой обработке сформированных двумерных массивов. При этом облучение антенной РЛС К парциальных участков поверхности и суммирование амплитуд элементов разрешения N РЛИ производится скользящим способом, причем величина азимутального шага скольжения диаграммы направленности антенны РЛС равна или близка к ее азимутальной полуширине, а сложение амплитуд сигналов N РЛИ, N=3, 4, производится поэлементно в массивах размером M/2N-2, где M - число формируемых азимутальных элементов, со скольжением массивов суммируемых элементов на шаг M/2N-2. 2 ил.

Изобретение относится к радиолокационным системам отображения данных, а именно к системам и способам трехмерной визуализации яркостной радиолокационной карты местности, и может применяться в охранных радиолокационных системах. Достигаемый технический результат - улучшение визуализации, а именно увеличение степени детализации радиолокационной информации. Указанный результат достигается за счет визуального трехмерного отображения уровня мощности радиолокационного сигнала, отраженного как подстилающей поверхностью, так и объектами, расположенными на ней, и расширение динамического диапазона за счет дополнительного использования псевдоцвета для визуального цветного отображения уровня мощности радиолокационного сигнала. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к бортовым радиолокационным станциям (БРЛС) летательных аппаратов, применяющим синтезирование апертуры антенны, и может использоваться в гражданской и военной авиации. Достигаемый технический результат - повышение азимутального разрешения и контрастности парциального кадра радиолокационного изображения (РЛИ) участка поверхности, близкого к направлению полета летательного аппарата. Указанный результат достигается за счет того, что заявленный способ состоит в объединении парциальных кадров РЛИ, каждый из которых получен посредством излучения когерентного импульсного зондирующего сигнала, облучения суммарной диаграммой направленности (ДН) антенны БРЛС соответствующего парциального участка картографируемой поверхности, приема отраженных сигналов, аналого-цифрового преобразования принятых сигналов и цифровой обработки полученных данных. При этом для устранения неоднозначности доплеровской частоты сигналов, отраженных от областей поверхности, расположенных слева и справа от вектора путевой скорости носителя БРЛС, в заявляемом способе дополнительно применяются прием отраженных сигналов разностной азимутальной диаграммой направленности антенны и двухканальная моноимпульсная обработка отраженных сигналов. 6 ил.

Изобретение относится к области радиолокации. Достигаемый технический результат изобретения - получение повышенного разрешения за счет обработки сигнала. Указанный результат достигается за счет того, что заявленный способ основан на излучении сигналов, приеме антенной отраженных от земной поверхности сигналов и их накоплении при перемещении луча антенны в переднем секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения, при этом излучение и прием отраженного сигнала во всем секторе обзора осуществляется когерентно при сканировании луча вблизи нулевого ракурса, когда реальный луч, плавно перемещаясь, охватывает весь передний сектор, при этом создавая за счет сканирования дополнительное расширение спектра принимаемого сигнала. Затем осуществляют определение фазового набега за период повторения принятого когерентного радиолокационного сигнала, компенсацию фазового набега, формирование двух сигналов из скомпенсированного по фазе сигнала с разными знаками крутизны частотной модуляции, выделение сигнала с положительной и отрицательной крутизнами, соответствующим сигналам, принятым справа и слева относительно направления движения летательного аппарата, пропорциональными азимутальному направлению сигнала, спектральный анализ полученных сигналов, объединение полученных изображений из двух сигналов в одно радиолокационное изображение. 2 ил.

Изобретение относится к радиолокации, а именно к бортовым радиолокационным системам наблюдения за земной поверхностью (радиовидению) на базе четырехканальной доплеровской радиолокационной станции с четырехэлементной антенной решеткой. Достигаемый технический результат - измерение координат элементов земной поверхности при формировании трехмерного изображения поверхности в зоне видимости РЛС. Сущность заявленного способа заключается в формировании на заданном промежутке времени синтезирования радиолокационного изображения участка земной поверхности в виде совокупности комплексных амплитуд сигналов отражения в элементах разрешения дальности на доплеровских частотах одновременно в четырех измерительных каналах, способ отличается тем, что для каждой четверки амплитуд соответствующих элементов изображений, полученных на одной и той же частоте, моноимпульсным методом измеряют угловые координаты соответствующего элемента поверхности и пересчитывают их в прямоугольные координаты антенной системы.

Изобретение относится к бортовым радиолокационным системам наблюдения за земной поверхностью и воздушной обстановкой, работающим в режиме реального луча на базе плоской антенной решетки. Достигаемый технический результат - формирование трехмерного изображения объектов отражения в зоне обзора с применением экономичной двухэтапной процедуры повышения разрешающей способности антенной решетки по угловым координатам. Указанный результат достигается за счет того, что способ формирования трехмерного изображения земной поверхности и воздушной обстановки с помощью антенной решетки заключается в последовательном сканировании зоны обзора со смещением луча антенны на ширину диаграммы направленности и формировании при каждом положении луча трехмерного изображения объектов отражения за счет двухэтапной обработки матрицы комплексных измерений, принятых в каналах антенной решетки, позволяющей оценить амплитуды поля отражения в угловых элементах дискретизации зоны видимости антенны во всех элементах разрешения дальности и получить пространственные координаты всех отражающих элементов в зоне обзора. 1 ил.
Изобретение относится к области радиовидения и может быть применено для обнаружения в миллиметровом диапазоне волн неоднородностей линейной формы в оптически непрозрачных средах. Достигаемый технический результат изобретения - определение точной формы линейных неоднородностей и повышение надежности их обнаружения при наличии мешающих факторов. Указанный результат достигается за счет того, что исследуемый объект освещается плоскополяризованной радиоволной и для каждой элементарной площадки на поверхности объекта исследования проводятся измерения, при которых угол поворота плоскости поляризации падающей волны к оси X принимает значения φ=180°·i/n, где i=0,…, n-1, n - число измерений. Если на рассмотренном участке расположена неоднородность линейной формы, то параметры отраженной волны зависят от угла φ, что позволяет обнаружить наличие неоднородности в области, соответствующей данной площадке. Способ может быть реализован аппаратурой, в состав которой входит генератор линейно поляризованного СВЧ излучения, поляризационная отражающая решетка, антенный блок с системой сканирования, приемник СВЧ излучения, аналого-цифровой преобразователь, блок управления и обработки результатов измерений. 2 ил.

Изобретение относится к радиолокации и может использоваться для определения состояния морской поверхности, а также для решения задач экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Достигаемый технический результат - обеспечение экологического контроля и раннего предупреждения о развитии чрезвычайных ситуаций, связанных с разливами нефти. Указанный результат достигается за счет того, что информационно-аналитическая система содержит антенный пост, расположенный на берегу и соединенный по цифровым коммуникационным каналам с программно-аналитическим центром (ПАЦ), выполняющим цифровую обработку, при этом антенный пост выполнен в виде навигационной радиолокационной станции (НРЛС) с возможностью работы в двух режимах: в режиме импульсной модуляции с помощью магнетронного или твердотельного передатчика, в зависимости от дальности наблюдаемой зоны, и режиме фазоманипулированной модуляции с помощью твердотельного передатчика, при этом НРЛС выполнена с возможностью осуществления непрерывного кругового или секторного обзора надводной обстановки, автоматического захвата и сопровождения обнаруженных целей, выходы «первичной локационной информации» и входы «управления» НРЛС являются портами цифровых коммуникационных каналов, программно-аналитический центр соединен с диспетчерским пунктом и потребителями локационной информации. 14 з.п. ф-лы, 2 ил.
Наверх