Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания



Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания
Двигатель внутреннего сгорания, транспортное средство, морское судно и способ выпуска для двигателя внутреннего сгорания

 

F01N13/08 - Глушители выхлопа или выхлопные устройства для машин или двигателей вообще; глушители выхлопа или выхлопные устройства для двигателей внутреннего сгорания (устройства и приспособления силовых установок транспортных средств, связанные с выпуском отработанных газов B60K 13/00; глушители шума всасывания, специально приспособленные для двигателей внутреннего сгорания или расположенные на них F02M 35/00; поглощение шума или снижение его уровня вообще G10K 11/16)

Владельцы патента RU 2439341:

ЯМАХА ХАЦУДОКИ КАБУСИКИ КАЙСЯ (JP)

Изобретение относится к двигателям внутреннего сгорания, используемым в транспортных средствах, в частности на морских судах. Двигатель внутреннего сгорания содержит камеру сгорания, имеющую выпускное отверстие, выпускной клапан для открытия или закрытия выпускного отверстия, и выпускное устройство, имеющее выпускной канал для направления отработанного газа, выпускаемого из камеры сгорания через выпускное отверстие. Выпускное устройство содержит сужающуюся секцию, расширяющуюся секцию и ответвленную секцию. Сужающаяся секция имеет площадь поперечного сечения для потока, меньшую на ее выходном конце, чем на ее входном конце. Расширяющаяся секция расположена дальше по потоку относительно сужающейся секции и имеет площадь поперечного сечения для потока, большую на ее выходном конце, чем на ее входном конце. Ответвленная секция предназначена для ответвления скачка уплотнения, распространяющегося в направлении потока в выпускном канале с более высокой скоростью, чем отработанный газ, проходящий в выпускной канал из камеры сгорания, когда выпускной клапан открыт, из части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции, и для распространения ответвленного скачка уплотнения назад в выпускной канал. Расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно расширяющейся секции. Отработанный газ, проходящий в выпускной канал из камеры сгорания, сталкивается со скачком уплотнения, который отражается в ответвленной секции перед расширяющейся секцией, и проходит через сужающуюся секцию, таким образом увеличивая давление отработанного газа в сужающейся секции. Отработанный газ проходит через расширяющуюся секцию для создания нового скачка уплотнения, и в выпускном канале новым скачком уплотнения создается отрицательное давление ближе по потоку относительно расширяющейся секции. Раскрыт вариант выполнения двигателя внутреннего сгорания, способ выпуска для двигателя внутреннего сгорания, транспортное средство, содержащее двигатель внутреннего сгорания, морское судно, содержащее двигатель внутреннего сгорания, и двигатель внутреннего сгорания, использующий способ выпуска. Технический результат заключается в улучшении рабочих характеристик. 6 н. и 1 з.п. ф-лы, 16 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к двигателю внутреннего сгорания, транспортному средству, морскому судну и способу выпуска для двигателя внутреннего сгорания.

Уровень техники

Обычно для увеличения рабочих характеристик двигателей внутреннего сгорания усовершенствуют выхлопные устройства двигателей внутреннего сгорания. Например, как описано в патентном документе 1, был предложен двигатель внутреннего сгорания, включающий сужающееся-расширяющееся сопло (обычно называемое "соплом Лаваля") для увеличения эффективности продувки. Сопло включает сужающуюся секцию, имеющую площадь поперечного сечения для потока, которая уменьшается по ходу текучей среды, расширяющуюся секцию, расположенную дальше по потоку относительно сужающейся секции и имеющую площадь поперечного сечения для потока, которая увеличивается по ходу текучей среды, и горловинную секцию, расположенную между сужающейся секцией и расширяющейся секцией. Когда отношение давления Р0 в сужающейся секции и давления Р в расширяющейся секции (то есть Р/Р0) меньше, чем критическое отношение давлений (для воздуха приблизительно 0,528), скорость текучей среды превышает скорость звука в расширяющейся секции. Целью изобретения в патентном документе 1 является улучшение эффективности продувки с использованием этой функции этого сопла. В частности, как показано на фиг.1 патентного документа 1, шесть выхлопных каналов рядного шестицилиндрового двигателя внутреннего сгорания сходятся в выхлопной коллектор. Кроме того, его выпускной канал образован так, что он имеет длину, которая увеличивает эффективность продувки, и в выпускном канале выхлопного коллектора расположено сопло. В патентном документе 1 описано, что поток отработанного газа, который прошел сопло и, таким образом, его скорость увеличена, захватывает отработанный газ, остающийся в выпускном коллекторе, и, таким образом, эффективность продувки может быть улучшена.

Патентный документ 1: Японская публикация полезной модели №1-76520.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Проблемы, решаемые изобретением

Авторы изучили двигатели внутреннего сгорания с использованием функции сужающегося-расширяющегося сопла, как описано в патентном документе 1. Изучая двигатели внутреннего сгорания, авторы обнаружили, что когда скорость отработанного газа увеличена до звуковой скорости, генерируя скачок уплотнения, давление в области ближе по потоку относительно скачка уплотнения уменьшено.

Авторы решили усилить рабочие характеристики двигателя внутреннего сгорания посредством генерирования отрицательного давления в выпускном канале, используя такое уменьшение давления в области ближе по потоку относительно скачка уплотнения. Однако в результате активного изучения патентного документа 1 авторы обнаружили, что даже если скорость отработанного газа становится высокой вследствие действия сужающегося-расширяющегося сопла, отрицательное давление не может генерироваться в части выхлопного коллектора, которая находится ближе по потоку сопла, по следующим причинам. Двигатель внутреннего сгорания, описанный в патентном документе 1, является двигателем внутреннего сгорания с шестью цилиндрами и создает зажигание через каждые 120 градусов поворота кривошипа. Таким образом, скачок уплотнения создается в выпускном канале с интервалом 120 градусов. В целом, угол, под которым открыт выпускной канал двигателя внутреннего сгорания (кинематический угол), составляет приблизительно 240 градусов. В двигателе внутреннего сгорания, описанном в патентном документе 1, окна цилиндров соединены с одним сужающимся-расширяющимся соплом в положении ближе них по потоку. Таким образом, когда выпускной канал одного цилиндра открыт, выпускной канал, по меньшей мере, одного из остающихся цилиндров открыт. Перед тем как выпускной канал одного цилиндра закрывается, выпускной канал цилиндра, в котором должно возникать следующее зажигание, открывается, и создается следующий скачок уплотнения. Таким образом, внутренняя часть выпускного коллектора всегда находится в состоянии положительного давления. Даже если отношение давления Р0 в сужающейся секции и давления Р в расширяющейся секции (то есть Р/РО) уменьшено до уровня ниже, чем критическое отношение давлений, и скорость отработанного газа превышает скорость звука в расширяющейся секции, внутренняя часть выпускного коллектора всегда остается в состоянии положительного давления. В результате невозможно ожидать полного улучшения рабочих характеристик двигателя внутреннего сгорания.

Целью настоящего изобретения, осуществленного в свете таких обстоятельств, является создание нового двигателя внутреннего сгорания, предлагающего улучшенные рабочие характеристики благодаря применению принципа сужающегося-расширяющегося сопла.

Способ решения проблем

В качестве одного способа решения вышеуказанной проблемы предполагается соединять расширяющуюся секцию только с одной камерой сгорания, которая расположена ближе по потоку относительно нее. В результате этого устройства делается невозможным то, что, когда выпускное отверстие одного цилиндра открыто, скачок уплотнения, генерируемый в выпускном отверстии другого цилиндра, распространяется в выпускной канал, соединенный с выпускным отверстием, которое открыто. Таким образом, положительное давление и отрицательное давление поочередно генерируются в части выпускного канала, которая находится ближе по потоку расширяющейся секции. Однако было обнаружено, что с этой конструкцией большое отрицательное давление не может генерироваться в выпускном канале по следующим причинам и вследствие следующих проблем. Одна проблема состоит в том, что скачок уплотнения, генерируемый, когда выпускное отверстие в камере сгорания открыто, ослабляется до достижения входного конца расширяющейся секции. Другая проблема состоит в том, что давление отработанного газа, текущего в выпускном канале с задержкой относительно скачка уплотнения, ослабляется до достижения отработанным газом входного конца расширяющейся секции. По этим причинам, даже если или скачок уплотнения, или отработанный газ достигает входного конца расширяющейся секции, отношение давлений давления РО в сужающейся секции и давления Р в расширяющейся секции не становится меньше критического отношения давлений. Таким образом, скорость текучей среды, проходящей в выпускном канале, не превышает скорость звука, и, таким образом, функция сужающегося-расширяющегося сопла не может быть получена.

Согласно первому варианту предложен двигатель внутреннего сгорания, содержащий камеру сгорания, имеющую выпускное отверстие, выпускной клапан для открытия или закрытия выпускного отверстия, и выпускное устройство, имеющее выпускной канал для направления отработанного газа, выпускаемого из камеры сгорания через выпускное отверстие, при этом выпускное устройство содержит сужающуюся секцию, имеющую площадь поперечного сечения для потока, меньшую на ее выходном конце, чем на ее входном конце, расширяющуюся секцию, расположенную дальше по потоку относительно сужающейся секции и имеющую площадь поперечного сечения для потока, большую на ее выходном конце, чем на ее входном конце, и ответвленную секцию для ответвления скачка уплотнения, распространяющегося в направлении потока в выпускном канале с более высокой скоростью, чем отработанный газ, проходящий в выпускной канал из камеры сгорания, когда выпускной клапан открыт, из части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции, и распространения ответвленного скачка уплотнения назад в выпускной канал, причем расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно расширяющейся секции, отработанный газ, проходящий в выпускной канал из камеры сгорания, сталкивается со скачком уплотнения, который отражается в ответвленной секции перед расширяющейся секцией, и проходит через сужающуюся секцию, таким образом, увеличивая давление отработанного газа в сужающейся секции, и отработанный газ проходит через расширяющуюся секцию для создания нового скачка уплотнения, и в выпускном канале новым скачком уплотнения создается отрицательное давление ближе по потоку относительно расширяющейся секции.

Согласно второму варианту предложен двигатель внутреннего сгорания, содержащий камеру сгорания, имеющую выпускное отверстие, выпускной клапан для открытия или закрытия выпускного отверстия, и выпускное устройство, имеющее выпускной канал для направления отработанного газа, выпускается из камеры сгорания через выпускное отверстие, при этом выпускное устройство содержит сужающуюся секцию, имеющую площадь поперечного сечения для потока, меньшую на ее выходном конце, чем на ее входном конце, расширяющуюся секцию, расположенную дальше по потоку относительно сужающейся секции и имеющую площадь поперечного сечения для потока, большую на ее выходном конце, чем на ее входном конце, и ответвленную секцию, ответвленную от части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции и имеющую отражающую секцию, способную отражать скачок уплотнения, причем расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно расширяющейся секции, причем скорость отработанного газа, выпускаемого из камеры сгорания, когда выпускной клапан открыт, составляет Ve, а скорость распространения скачка уплотнения, распространяющегося в выпускном канале, составляет Vs, при этом расстояние Le между выпускным отверстием и входом ответвленной секции и расстояние Ls между входом ответвленной секции и отражающей секцией удовлетворяет отношению:

Le/Ve≤(Le+2Ls)/Vs,

и когда время от момента, когда выпускное отверстие открыто, до момента, когда выпускное отверстие закрыто, составляет tv, расстояние Ld между входом ответвленной секции и расширяющейся секцией удовлетворяет отношению:

(Le+2Ls+Ld)/Vs≤tv+(Le+Ld)/Ve.

Выпускной канал предпочтительно дополнительно содержит часть, имеющую постоянную площадь поперечного сечения для потока между сужающейся секцией и расширяющейся секцией.

Согласно еще одному варианту предложен способ выпуска для двигателя внутреннего сгорания, включающий этапы, на которых воспламеняют топливо в камере сгорания, открывают выпускное отверстие камеры сгорания для выпуска отработанного газа из камеры сгорания в выпускной канал и создания скачка уплотнения, распространяющегося в выпускном канале с более высокой скоростью, чем отработанный газ, ответвляют, по меньшей мере, часть скачка уплотнения из выпускного канала и отражают ответвленный скачок уплотнения назад в выпускной канал для обеспечения столкновения скачка уплотнения с отработанным газом, таким образом, увеличивая давление отработанного газа, направляют отработанный газ в часть выпускного канала, имеющую площадь поперечного сечения, которая уменьшается в направлении потока, таким образом увеличивая давление отработанного газа, и направляют отработанный газ в часть выпускного канала, имеющую площадь поперечного сечения, которая увеличивается в направлении потока, таким образом создавая новый скачок уплотнения, распространяющийся в направлении потока в выпускном канале, для создания области отрицательного давления в выпускном канале.

Согласно еще одному варианту предложено транспортное средство, содержащее двигатель внутреннего сгорания согласно первому или второму варианту изобретения.

Согласно еще одному варианту предложено морское судно, содержащее двигатель внутреннего сгорания согласно первому или второму варианту изобретения.

Согласно еще одному варианту предложен двигатель внутреннего сгорания, использующий вышеописанный способ выпуска.

Эффект изобретения

Согласно настоящему изобретению расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно нее, и также ответвленная секция расположена в части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции. В результате скачок уплотнения, распространяющийся в выпускной трубе с более высокой скоростью, чем отработанный газ, выходящий из камеры сгорания в выпускной канал, когда выпускное отверстие открыто, ответвляется от части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции, распространяется назад в выпускной канал после задержки в ответвленной секции и сталкивается с отработанным газом, текущим с задержкой. Таким образом, давление отработанного газа увеличивается. Кроме того, так как отработанный газ проходит через расширяющуюся секцию, давление отработанного газа увеличивается. Так как отработанный газ проходит через расширяющуюся секцию, создается новый скачок уплотнения, распространяющийся в направлении потока. Так как положительное давление и отрицательное давление поочередно генерируются в части выпускного канала, который находится ближе по потоку расширяющейся секции, и также давление ближе по потоку относительно нового скачка уплотнения уменьшено, большое отрицательное давление создается в части выпускного канала, которая находится ближе по потоку расширяющейся секции. Это может улучшить рабочие характеристики двигателя внутреннего сгорания.

Краткое описание чертежей

Фиг.1 - вид конструкции выпускного устройства двигателя внутреннего сгорания согласно Варианту 1 осуществления изобретения, показывающий вид в сечении его выпускного канала и т.п.

Фиг.2 - вид конструкции сужающегося-расширяющегося сопла.

Фиг.3 - зависимость между отношением давлений и числом Маха в сужающемся-расширяющемся сопле.

Фиг.4 - виды в сечении выпускного канала и т.п., показывающие прогрессирующее состояние скачка уплотнения и отработанного газа; (А) - вид исходного состояния такта выпуска, (В) - вид состояния, когда скачок уплотнения распространяется к ответвленной секции, и (С) - вид состояния, когда скачок уплотнения, отраженный ответвленной секцией, сталкивается с отработанным газом.

Фиг.5 - схематичный вид выпускного канала и т.п., показывающий путь в выпускном канале, в котором распространяется скачок уплотнения, и путь в выпускном канале, в котором распространяется отработанный газ.

Фиг.6 - схематичный вид, изображенный на основе фотографии внутренней части сужающегося-расширяющегося сопла, выполненной методом Теплера.

Фиг.7 - график, показывающий зависимость между скоростью отработанного газа и давлением отработанного газа, когда скачок уплотнения ускоряется.

Фиг.8 - график, показывающий зависимость между скоростью отработанного газа и температурой отработанного газа, когда скачок уплотнения ускоряется.

Фиг.9 - графики отношения давления и объема, представляющие насосные потери; (А) - график отношения давления и объема обычного двигателя внутреннего сгорания и (В) - график отношения давления и объема двигателя внутреннего сгорания согласно настоящему изобретению.

Фиг.10 - вид конструкции двигателя внутреннего сгорания согласно Варианту 2 осуществления изобретения, показывающий вид в сечении его выпускного канала и т.п.

Фиг.11 - вид конструкции двигателя внутреннего сгорания согласно Варианту 3 осуществления изобретения, показывающий вид в сечении его выпускного канала и т.п.

Фиг.12 - вид конструкции двигателя внутреннего сгорания согласно Варианту 4 осуществления изобретения, показывающий вид в сечении его выпускного канала и т.п.

Фиг.13 - зависимость между скоростью отработанного газа и давлением отработанного газа во временной последовательности.

Фиг.14 - зависимость между давлением отработанного газа и температурой отработанного газа во временной последовательности.

Фиг.15 - пример морского судна, включающего установленный на нем двигатель внутреннего сгорания в качестве забортного двигателя.

Фиг.16 - пример мотоцикла, имеющего установленный на нем двигатель внутреннего сгорания.

Предпочтительный вариант осуществления изобретения

В результате активных исследований авторы пришли к идее, что большое отрицательное давление может генерироваться в выпускном канале при применении принципа сужающегося-расширяющегося сопла и с использованием следующего способа, не известного из предшествующего уровня техники. Авторы обнаружили, что это может улучшить рабочие характеристики двигателя внутреннего сгорания.

Способ включает следующее. (1) Скачок уплотнения, предшествующий отработанному газу, ответвляется; (2) ответвленный скачок уплотнения задерживается таким образом, что скачок уплотнения сталкивается с отработанным газом, таким образом, увеличивая давление отработанного газа; (3) отработанный газ, имеющий увеличенное давление, проходит через расширяющуюся секцию для ускорения до сверхзвуковой скорости, таким образом, генерируя скачок уплотнения; и (4) создается отрицательное давление в части выпускного канала, которая находится ближе по потоку расширяющейся секции.

Вариант 1 осуществления изобретения

Далее двигатель внутреннего сгорания, согласно варианту осуществления настоящего изобретения, будет описан подробно со ссылками на чертежи. В нижеследующем описании термины "ближе по потоку" и "дальше по потоку" соответственно относятся к положениям ближе по потоку и дальше по потоку относительно направления, в котором проходит текучая среда, такая как отработанный газ и т.п.

Как показано на фиг.1, двигатель 1 внутреннего сгорания включает корпус 3 цилиндра и головку 4 цилиндра. В корпусе 3 цилиндра и головке 4 цилиндра сформирована камера 10 сгорания. Двигатель 1 внутреннего сгорания является бензиновым четырехтактным двигателем. Двигатель 1 внутреннего сгорания может быть двигателем с воздушным охлаждением или двигателем с жидкостным охлаждением. Головка 4 цилиндра имеет сформированные в ней дальнюю по потоку секцию 6 впускного канала и ближнюю по потоку секцию 7 выпускного канала 16. Головка 4 цилиндра содержит впускной клапан 8 для открытия или закрытия впускного отверстия 8а, выпускной клапан 9 для открытия или закрытия выпускного отверстия 9а, механизм привода клапана (не показан) для привода впускного клапана 8 и выпускного клапана 9 и т.п. В этом варианте осуществления изобретения одна дальняя по потоку секция 6 впускного канала и одна ближняя по потоку секция 7 выпускного канала применены для одной камеры 10 сгорания. В альтернативном варианте множество впускных отверстий 8а, множество выпускных отверстий 9а, множество впускных клапанов 8, множество выпускных клапанов 9, множество дальних по потоку секций 6 впускного канала и множество ближних по потоку секций 7 выпускного канала могут быть применены для одной камеры сгорания. Инжектор 2 для впрыска топлива прикреплен к головке 4 цилиндра. Хотя это не показано, цилиндр 4 также снабжен свечой зажигания.

Хотя это не показано, во впускном канале расположен дроссельный клапан. Дроссельный клапан приводится в действие вручную или управляется с помощью электроники.

Выпускное устройство 5 включает первую выпускную трубу 12, вторую выпускную трубу 13, третью выпускную трубу 14 и выхлопную камеру 15, которые последовательно соединены в этом порядке от ближнего по потоку положения к дальнему по потоку положению. Выпускное устройство 5 имеет сформированный в нем выпускной канал 16. Первая выпускная труба 12 прикреплена к головке 4 цилиндра при помощи крепежного болта 11. Вторая выпускная труба 13 соединена с дальним по потоку концом первой выпускной трубы 12. Третья выпускная труба 14 соединена с дальним по потоку концом второй выпускной трубы 13. Третья выпускная труба 14 и выхлопная камера 15 выполнены за одно целое.

В выпускном устройстве 5 расположены первый катализатор 17 и второй катализатор 18. Второй катализатор 18 расположен дальше по потоку относительно первого катализатора 17. Между первым катализатором 17 и вторым катализатором 18 существует пространство.

Глушитель (не показан) соединен с дальним по потоку концом выхлопной камеры 15. Отработанный газ, который поступает в выхлопную камеру 15, проходит глушитель и затем выпускается наружу. Выхлопная камера 15 снабжена датчиком 19 концентрации кислорода для определения количества кислорода в отработанном газе.

Электронный управляющий блок 20, который является управляющим устройством, управляет количеством топлива, которое впрыскивается инжектором 2, моментом зажигания свечой зажигания и т.п., на основе частоты вращения двигателя 1 внутреннего сгорания, угла открытия дроссельного клапана, количества кислорода в отработанном газе, определенного датчиком 19 концентрации кислорода, и т.п. В этом варианте осуществления изобретения электронный управляющий блок 20 управляет количеством топлива, которое впрыскивается инжектором 2, таким образом, что, например, отношение количества воздуха к количеству топлива в топливной смеси, которая будет израсходована двигателем 1 внутреннего сгорания, является теоретическим отношением количества воздуха к количеству топлива.

Выпускное устройство 5 включает патрубок 22. Патрубок 22 имеет сформированную в нем ответвленную секцию 21. Один конец патрубка 22 соединен с выпускным каналом 16, а другой конец патрубка 22 закрыт. Закрытый конец патрубка 22 действует как отражающая секция для отражения скачка уплотнения, как описано ниже. В этом варианте осуществления изобретения патрубок 22 выполнен за одно целое с первой выпускной трубой 12. В альтернативном варианте патрубок 22 может быть выполнен отдельно и прикреплен к первой выпускной трубе 12. Например, первая выпускная труба 12 и патрубок 22 могут быть приварены друг к другу или прикреплены друг к другу при помощи крепежного элемента (не показан), такого как болт или подобное средство. Ответвленная секция 21 сформирована так, что она имеет большую площадь поперечного сечения потока на закрытом конце, чем на конце, соединенном с выпускным каналом 16, но форма ответвленной секции 21 не ограничена показанной на фиг.1. Например, ответвленная секция 21 может иметь форму камеры, как показано на фиг.1, может иметь форму трубы, имеющей постоянную площадь поперечного сечения потока и имеющей закрытый конец, или может иметь форму, имеющую меньшую площадь поперечного сечения канала для потока на закрытом конце, чем на конце, соединенном с выпускным каналом. Вход ответвленной секции 21 (то есть часть, соединенная с выпускным каналом 16) имеет размер, позволяющий скачку уплотнения, распространяющемуся в выпускном канале 16, ответвляться в ответвленную секцию 21 и распространяться в ней, как описано ниже.

Дальше по потоку относительно ответвленной секции 21 расположено сужающееся-расширяющееся сопло (обычно называемое "соплом Лаваля") 31. Как показано на фиг.2, сужающееся-расширяющееся сопло 31 имеет сужающуюся секцию 32, имеющую площадь поперечного сечения для потока, которая уменьшается по ходу текучей среды, расширяющуюся секцию 33, расположенную дальше по потоку относительно сужающейся секции 32 и имеющую площадь поперечного сечения для потока, которая увеличивается по ходу текучей среды, и горловинную секцию 34, расположенную между сужающейся секцией 32 и расширяющейся секцией 33 и имеющую самую малую площадь поперечного сечения для потока. На фиг.2 стрелка указывает направление, в котором распространяется текучая среда. Сужающееся-расширяющееся сопло 31 ускоряет скорость отработанного газа, текущего в выпускном канале 16, от дозвуковой скорости до сверхзвуковой скорости. Как показано на фиг.2, площадь А1 поперечного сечения для потока на входном конце сужающейся секции 32, площадь А2 поперечного сечения для потока горловинной секции 34 и площадь A3 поперечного сечения для потока на выходном конце расширяющейся секции 33 имеют зависимости А1>А2 и А2<А3. В этом варианте осуществления изобретения площади поперечного сечения для потока сужающейся секции 32 и расширяющейся секции 33 каждая изменяются с постоянным коэффициентом в направлении потока. Нет какого-либо особого ограничения формы сужающейся секции 32 и расширяющейся секции 33. Сужающаяся секция 32 и расширяющаяся секция 33 могут быть сформированы так, чтобы они имели форму, имеющую площадь поперечного сечения для потока, изменяющуюся постепенно, как сопло, предназначенное для ракет, или могут быть сформированы так, чтобы они имели ступенчатую форму.

В этом варианте осуществления изобретения расширяющаяся секция 33 соединена только с одной камерой 10 сгорания, расположенной ближе по потоку относительно расширяющейся секции 33, при помощи выпускного канала 16. Таким образом, отработанный газ 36, выпускаемый из выпускного отверстия 9а, сформированного только в одной камере 10 сгорания, проходит в расширяющуюся секцию 33.

Сужающееся-расширяющееся сопло 31 сформировано для выполнения условий, представленных выражениями (1) и (2) ниже. В результате скорости отработанного газа, текущего в горловинную секцию 34, достигающей числа M1 (то есть звуковой скорости), отработанный газ в расширяющейся секции 33 может быть ускорен до сверхзвуковой скорости.

Выражение 1

где Λ представляет собой коэффициент, вычисленный согласно выражению (2).

Выражение 2

Среди этих выражений выражение (1) представляет зависимость между формой выпускной трубы и числом Маха в основном потоке, сопровождаемом вязкостным трением, выражение (2) представляет Λ в выражении (1). В этих выражениях М представляет число Маха, А представляет площадь поперечного сечения выпускной трубы в произвольном сечении, D представляет диаметр трубы в произвольном сечении, γ представляет удельную теплоемкость, х представляет расстояние в направлении потока и f представляет коэффициент трения.

С сужающимся-расширяющимся соплом 31, имеющим описанную выше конструкцию, когда отношение давлений полного давления Р0 текучей среды в сужающейся секции 32 и статического давления Р текучей среды в расширяющейся секции 33, то есть Р/РО, меньше, чем критическое отношение давлений (=0,528; точка С на фиг.3), скорость текучей среды составляет скорость звука в горловинной секции и составляет сверхзвуковую скорость в расширяющейся секции 33. На фиг.3 показано отношение давлений полного давления Р0 текучей среды в сужающейся секции 32 и статического давления Р текучей среды в расширяющейся секции 33, то есть Р/Р0, и скорость текучей среды, проходящей расширяющуюся секцию 33 при каждом отношении давлений. Когда полное давление Р0 в сужающейся секции 32 увеличено для того, чтобы сделать Р/Р0 меньше критического отношения давлений, скорость может быть сверхзвуковой скоростью в сужающемся-расширяющемся сопле 31.

Когда скорость становится сверхзвуковой скоростью в сужающемся-расширяющемся сопле 31, генерируются скачок уплотнения, распространяющийся в направлении потока в расширяющейся секции 33, и волна разрежения, распространяющаяся против потока в расширяющейся секции 33. Таким образом, текучая среда в пространстве между скачком уплотнения, распространяющимся в направлении потока в выпускном канале 16, и волной разрежения, распространяющей против потока в выпускном канале 16, быстро расширяется, и, таким образом, давление отработанного газа, проходящего в выпускном канале 16, может быть уменьшено. В результате температура отработанного газа может быть быстро уменьшена эффектом адиабатического охлаждения, вызванного адиабатическим расширением. В результате активных исследований авторы осуществили такое состояние, комбинируя сужающееся-расширяющееся сопло 31 и ответвленную секцию 21.

Далее со ссылками на фиг.4(А)-4(С) будет описан способ приведения отработанного газа в низкотемпературное состояние и состояние низкого давления. На фиг.4(А)-4(С) схематично показано выпускное устройство 5. На фиг.4(А)-4(С) элементам, идентичным или эквивалентным, показанным на фиг.1 или фиг.2, присвоены идентичные ссылочные позиции.

Как показано на фиг.4(А), когда выпускное отверстие 9а открыто в ходе такта выпуска двигателя 1 внутреннего сгорания, отработанный газ 36 высокого давления выпускается из камеры 10 сгорания в ближнюю по потоку секцию 7 выпускного канала 16 через выпускное отверстие 9а. В момент, когда выпускное отверстие 9а начинает открываться, перепад давлений между камерой 10 сгорания и ближней по потоку секцией 7 выпускного канала 16 является большим. Таким образом, скорость отработанного газа 36 становится звуковой скоростью, и, таким образом, в ближней по потоку секции 7 выпускного канала 16 создается скачок 35 уплотнения. Когда угол раскрытия выпускного отверстия 9а увеличивается, количество отработанного газа 36, проходящего в выпускной канал 16, увеличивается, но скорость отработанного газа 36 уменьшается. Скорость отработанного газа 36 также уменьшается, когда отработанный газ 36 продвигается в выпускном канале 16. Как показано на фиг.4(А), скачок 35 уплотнения распространяется в направлении потока в выпускном канале 16. В этот момент отработанный газ 36 продвигается в направлении потока в выпускном канале 16 с задержкой относительно скачка 35 уплотнения и с меньшей скоростью, чем он.

Как показано на фиг.4(В), скачок 35 уплотнения, распространяющийся в выпускном канале 16, разделяется на скачок уплотнения, распространяющий в выпускном канале 16, и скачок уплотнения, распространяющийся в ответвленную секцию 21 во входе 21а ответвленной секции 21, и затем эти скачки уплотнения продвигаются отдельно в выпускном канале 16 и ответвленной секции 21. Скачок 35 уплотнения, распространяющийся в выпускном канале 16, ослабляется и исчезает после прохождения сужающегося-расширяющегося сопла 31. В отличие от этого ответвленный скачок 35 уплотнения, распространяющийся в ответвленной секции 21, отражается отражающей секцией 21b ответвленной секции 21 и распространяется в противоположном направлении в ответвленной секции 21, возвращаясь в выпускной канал 16.

Момент времени, когда выпускное отверстие 9а открыто и отработанный газ 36 образуется до того, как отработанный газ 36 достигает входа 21а ответвленной секции 21, задан как T1. Время от момента, когда скачок 35 уплотнения образуется в выхлопном отверстии 9а, до отражения скачка 35 уплотнения отражающей секцией 21b ответвленной секции 21 и достигает входа 21а ответвленной секции 21, задано как Т2. Когда выполнено состояние T1≤Т2, как показано на фиг.4(С), скачок 35 уплотнения и отработанный газ 36 сталкиваются друг с другом в положении дальше по потоку относительно входа 21а ответвленной секции 21. Ответвленная секция 21 имеет такую длину, что скачок 35 уплотнения, отраженный ответвленной секцией 21, и отработанный газ 36 сталкиваются друг с другом во входе 21а ответвленной секции 21.

Как показано на фиг.5, расстояние от центра 9ас выпускного отверстия 9а до центральной линии Х сечения для потока во входе 21а ответвленной секции 21 задано как Le, и расстояние от центральной линии Y сечения для потока выпускного канала 16 до отражающей секции 21b задано как Ls. Скорость отработанного газа 36 задана как Ve, и скорость распространения скачка 35 уплотнения задана как Vs. В этом случае время T1, которое составляет время от момента, когда выпускной канал 9а открывается, до момента, когда отработанный газ 36 достигает входа 21а ответвленной секции 21, представлено выражением (3). Время Т2, которое составляет период от момента, когда выпускной канал 9а открыт, до отражения скачка уплотнения отражающей секцией 21b ответвленной секции 21 и достигает центральной линии Y выпускного канала 16, представлено выражением (4):

Когда T1 равно или меньше, чем T2 (T1<T2), отраженный скачок 35 уплотнения и отработанный газ 36 сталкиваются друг с другом в положении дальше по потоку относительно входа 21а ответвленной секции 21. В частности, когда Le/Ve≤(Le+2Ls)/Vs, скачок 35 уплотнения и отработанный газ 36 сталкиваются друг с другом в положении дальше по потоку относительно входа 21а ответвленной секции 21. Для удобства, например, максимальную скорость отработанного газа 36 можно принять как скорость Ve или среднюю скорость отработанного газа 36 можно принять как скорость Ve. Аналогичным образом, например, максимальную скорость распространения скачка 35 уплотнения можно принять как скорость Vs распространения, или среднюю скорость распространения скачка 35 уплотнения можно принять как скорость Vs распространения.

Как показано на фиг.5, расстояние от центральной линии Х сечения для потока на входе 21а ответвленной секции 21 до входного конца расширяющейся секции 33 сужающегося-расширяющегося сопла 31 задано как Ld, и время от момента, когда выпускной клапан 9 открывается, до момента, когда выпускной клапан 9 закрывается, задано как tv. Время Т3 от момента открытия выпускного отверстия 9а до момента, когда задняя часть порции отработанного газа 36 достигает входного конца расширяющейся секции 33, представлено выражением (5). Время Т4 от момента, когда выпускной канал 9а открывается, до момента, когда скачок уплотнения отражен отражающей секцией 21b и достигает входного конца расширяющейся секции 33, представлено выражением (6):

Когда Т4 равно или меньше, чем Т34≤Т3), скачок 35 уплотнения и отработанный газ 36 могут сталкиваться друг с другом до того, как весь отработанный газ 36 проходит горловинную секцию 34. В частности, когда (Le+2Ls+Ld)/Vs≤tv+(Le+Ld)/Ve, скачок 35 уплотнения и отработанный газ 36 могут сталкиваться друг с другом до того, как весь отработанный газ 36 проходит горловинную секцию 34.

В случае, когда расстояние Ls между входом 21а ответвленной секции 21 и отражающей секцией 21b относительно короткое, ослабление скачка 35 уплотнения в ответвленной секции 21 сдерживается. Например, расстояние Ls может быть короче, чем расстояние Le.

В результате того, что скачок 35 уплотнения и отработанный газ 36 сталкиваются друг с другом в положении дальше по потоку относительно входа 21а и ближе по потоку относительно расширяющейся секции 33, давление отработанного газа 36, проходящего в выпускном канале, может быть увеличено. Когда это происходит, полное давление Р0 ближе по потоку относительно входа сужающегося-расширяющегося сопла 31 увеличивается. Таким образом, отношение полного давления Р0 ближе по потоку относительно входа и статического давления Р дальше по потоку относительно горловинной секции 34, то есть Р/Р0, становится ниже, чем критическое отношение давлений, составляющее 0,528. В результате скорость отработанного газа 36 в горловинной секции 34 достигает звуковой скорости.

На фиг.6 показан схематичный вид, полученный на основе фотографии внутренней части сужающегося-расширяющегося сопла, выполненной методом Теплера. В результате достижения отработанным газом 36 звуковой скорости в сужающемся-расширяющемся сопле 31 создается новый скачок уплотнения. Новый скачок 35b уплотнения ускоряется, проходя расширяющуюся секцию 33 сужающегося-расширяющегося сопла 31. Как показано на фиг.6, когда создается скачок 35b уплотнения, создается волна 35 с разрежения, распространяющаяся против скачка 35b уплотнения. В результате ускорения скачка 35b уплотнения в расширяющейся секции 33 и распространения волны 35с разрежения против скачка 35b уплотнения давление отработанного газа 36, находящегося между скачком 35b уплотнения и волной 35с разрежения, значительно уменьшается, становясь равным или меньшим, чем атмосферное давление, благодаря эффекту адиабатического охлаждения, вызванному адиабатическим расширением.

На фиг.7 и фиг.8 показаны результаты моделирований, выполненных авторами. На фиг.7 показаны скорость отработанного газа и давление отработанного газа в точках в выпускном канале 16 непосредственно после того, как в сужающемся-расширяющемся сопле 31 создается новый скачок 35b уплотнения. На фиг.8 показаны скорость отработанного газа и температура отработанного газа в точках в выпускном канале 16 непосредственно после того, как в сужающемся-расширяющемся сопле 31 создается новый скачок 35b уплотнения. После того как в сужающемся-расширяющемся сопле 31 создается скачок 35b уплотнения, скачок 35b уплотнения ускоряется в расширяющейся секции 33. Когда это происходит, как показано на фиг.7 и фиг.8, скорость отработанного газа быстро увеличивается, тогда как давление и температура отработанного газа быстро уменьшаются. На фиг.7 и фиг.8 показана скорость отработанного газа, но не показана скорость распространения скачка уплотнения. На фиг.7 и фиг.8 горловинная секция 34 сужающегося-расширяющегося сопла 31 задана как относительно длинная. После того как скачок 35 уплотнения, отраженный ответвленной секцией 21, сталкивается с отработанным газом 36, скачок 35 уплотнения распространяется в горловинной секции 34, опережая отработанный газ 36. В этой точке адиабатическое расширение создается в пространстве между отработанным газом 36 и скачком 35 уплотнения, и, таким образом, давление уменьшается. Таким образом, отработанный газ 36 всасывается скачком 35 уплотнения в горловинную секцию 34 без уменьшения его скорости. Таким образом, благодаря заданию длины горловинной секции 34, имеющей постоянную площадь поперечного сечения канала для потока в соответствии с двигателем внутреннего сгорания, временные интервалы, с которыми скачок 35b уплотнения должен быть ускорен в расширяющейся секции 33, другими словами, временные интервалы, с которыми давление и температура отработанного газа должны быть уменьшены, могут быть установлены в соответствии с двигателем внутреннего сгорания.

Как описано выше, двигатель 1 внутреннего сгорания, согласно этому варианту осуществления изобретения, может значительно уменьшать температуру и давление отработанного газа в выпускном канале 16 по сравнению с предшествующим уровнем техники. Двигатель 1 внутреннего сгорания, согласно этому варианту осуществления изобретения, имеет только одну камеру 10 сгорания ближе по потоку относительно расширяющейся секции 33 и, таким образом, не подвергается влиянию отработанного газа из других цилиндров, в отличие от двигателей предшествующего уровня техники. Благодаря уменьшению температуры и давления отработанного газа, таким образом, рабочие характеристики двигателя 1 внутреннего сгорания могут быть улучшены, например, как описано ниже.

В этом варианте осуществления изобретения температура отработанного газа 36 в выпускном канале 16 может быть уменьшена ближе по потоку относительно первого катализатора 17. Таким образом, предотвращается избыточное повышение температуры первого катализатора 17 и второго катализатора 18. В случае, когда первый катализатор 17 и второй катализатор 18 являются трехкомпонентными нейтрализаторами, когда температура чрезмерно высока, возникает феномен, называемый "спеканием", который снижает эффективность очистки. Однако в этом варианте осуществления изобретения такое спекание может быть эффективно предотвращено. Так как в этом варианте осуществления изобретения спекание предотвращается, даже когда двигатель внутреннего сгорания работает в состоянии высокой нагрузки, топливо может сгорать при теоретическом отношении количества воздуха к количеству топлива. Таким образом, отработанный газ 36 может эффективно очищаться первым катализатором 17 и вторым катализатором 18. Другими словами, в этом варианте осуществления изобретения характеристика очистки, которая является одной рабочей характеристикой двигателя 1 внутреннего сгорания, может быть улучшена. В этом варианте осуществления изобретения два катализатора расположены последовательно в середине выпускного канала 16, но настоящее изобретение не ограничено этим. Может применяться только один катализатор, или три, или больше катализаторов. Множество катализаторов может быть расположено параллельно.

Благодаря значительному уменьшению давления отработанного газа, как в этом варианте осуществления изобретения, насосные потери двигателя 1 внутреннего сгорания могут быть уменьшены. Давление отработанного газа в выпускном канале 16 значительно уменьшено. В результате поршень (не показан) двигателя 1 внутреннего сгорания притягивается к выпускному каналу 16, а именно к верхней мертвой точке, в ходе такта выпуска, и, таким образом, работа, необходимая для движения поршня в ходе такта выпуска, уменьшена.

Это будет описано более подробно со ссылками на фиг.9. На фиг.9 (А) показан график отношения давления и объема обычного двигателя внутреннего сгорания, а на фиг.9(В) показан график отношения давления и объема двигателя 1 внутреннего сгорания в этом варианте осуществления изобретения. В этом варианте осуществления изобретения, как показано на фиг.9(В), область, окруженная замкнутой кривой, образуется вблизи верхней мертвой точки такта выпуска двигателя внутреннего сгорания (в области, окруженной пунктирной линией с одной точкой). Область, окруженная замкнутой кривой, соответствует работе, проведенной двигателем 1 внутреннего сгорания. А именно когда давление отработанного газа значительно уменьшено благодаря созданию скачка 35b уплотнения в расширяющейся секции 33, поршень притягивается отработанным газом, что содействует выполнению двигателем 1 внутреннего сгорания полезной работы в ходе такта выпуска.

Вариант 2 осуществления изобретения

Согласно настоящему изобретению, так как давление отработанного газа в выпускном канале 16 уменьшено, вторичный воздух легко поступает в выпускной канал 16. Таким образом, как показано на фиг.10, в выпускном канале 16 может быть расположен воздушный канал 71 для подачи вторичного воздуха. За исключением этого отличия конструкции Вариант 2 осуществления изобретения является аналогичным Варианту 1 осуществления изобретения. Соответственно, подробное описание Варианта 2 осуществления изобретения дано подробным описанием со ссылками на фиг.1-9 относительно Варианта 1 осуществления изобретения.

Трубка 72 для подачи воздуха соединена между патрубком 22 и сужающимся-расширяющимся соплом 31 в первой выпускной трубе 12. Передний конец трубки 72 для подачи воздуха проходит внутрь выпускного канала 16. Выходное отверстие 73 для воздуха выполнено в виде прорези в переднем конце трубки 72 для подачи воздуха. Благодаря этой конструкции трубка 72 для подачи воздуха может подавать воздух в широкую область выпускного канала 16.

Входной конец трубки 72 для подачи воздуха соединен с окружающей средой снаружи двигателя внутреннего сгорания через питающий клапан 74 и клапан 75 регулирования количества воздуха. Питающий клапан 74 предотвращает выход отработанного газа наружу из двигателя внутреннего сгорания через трубку 72 для подачи воздуха. Питающий клапан 74 выполнен с возможностью открытия отрицательным давлением, генерируемым в выпускном канале 16, для впуска воздуха к выходному отверстию 73 для воздуха трубки 72 для подачи воздуха. Клапан 75 регулирования количества воздуха выполнен с возможностью согласования количества воздуха с рабочим состоянием двигателя 1 внутреннего сгорания. Клапан 75 регулирования количества воздуха включает привод, серводвигатель, соленоид или подобное средство. Угол раскрытия клапана 75 регулирования количества воздуха контролируется электронным управляющим блоком 20. Трубка 72 для подачи воздуха может быть соединена с впускным каналом двигателя 1 внутреннего сгорания.

Когда угол раскрытия дроссельного клапана меньше, чем заданный угол, электронный управляющий блок 20 вызывает закрытие клапана 75 регулирования количества воздуха или относительное уменьшение угла раскрытия дроссельного клапана. Заданный угол предварительно установлен и сохранен в запоминающем устройстве электронного управляющего блока 20. Когда угол раскрытия дроссельного клапана больше, чем заданный угол, электронный управляющий блок 20 увеличивает угол раскрытия клапана 75 регулирования количества воздуха. Таким образом, понятно, что угол раскрытия клапана 75 регулирования количества воздуха увеличивается или уменьшается в соответствии с углом раскрытия дроссельного клапана. Применение клапана 75 регулирования количества воздуха позволяет подавать воздух в выпускной канал 16 с адекватным расходом без избытка или недостаточности. Клапан 75 регулирования количества воздуха не является абсолютно необходимым и может быть исключен из конструкции.

В этом варианте осуществления изобретения воздух может эффективно подаваться в выпускной канал 16 отрицательным давлением, генерируемым в выпускном канале 16. Отрицательное давление значительно более высоко, а именно давление значительно ниже, чем давление в двигателе внутреннего сгорания в целом, который не включает сужающееся-расширяющееся сопло 31 или патрубок 22. Феномен, заключающийся в том, что отрицательное давление создается действием сужающегося-расширяющегося сопла 31, продолжает существовать, даже когда частота вращения двигателя 1 внутреннего сгорания увеличивается до уровня, который выше, чем частота вращения при максимальной мощности. Таким образом, в этом варианте осуществления изобретения, даже когда частота вращения двигателя 1 внутреннего сгорания становится высокой, достаточное количество воздуха может быть подано в выпускной канал 16. В обычном двигателе внутреннего сгорания отрицательное давление не создается в выпускном канале при высокой частоте вращения или в состоянии высокой нагрузки и, таким образом, используется мощный насос для принудительной подачи воздуха. В отличие от этого в этом варианте осуществления изобретения в выпускной канал 16 может быть подано достаточное количество воздуха без использования отдельного устройства для принудительной подачи воздуха в выпускной канал 16, такого как воздушный насос или подобное средство.

Температура воздуха, подаваемого в выпускной канал 16, примерно равна температуре внешнего воздуха и значительно ниже, чем температура отработанного газа. Таким образом, в этом варианте осуществления изобретения температура отработанного газа может быть дополнительно уменьшена воздухом, имеющим низкую температуру, который подается в выпускной канал 16 в большом количестве. Также в этом варианте осуществления изобретения большое количество воздуха может быть подано ближе по потоку относительно первого катализатора 17. Таким образом, даже когда количество впрыскиваемого топлива увеличено для того, чтобы сделать отношение количества воздуха к количеству топлива двигателя 1 внутреннего сгорания меньше, чем теоретическое отношение количества воздуха к количеству топлива, отработанный газ, содержащий количество кислорода, эквивалентное составу, где отношение количества воздуха к количеству топлива является теоретическим отношением количества воздуха к количеству топлива, может быть подан к первому катализатору 17. Таким образом, в этом варианте осуществления изобретения температура отработанного газа также может быть уменьшена, делая отношение количества воздуха к количеству топлива для двигателя 1 внутреннего сгорания меньшим, чем теоретическое отношение количества воздуха к количеству топлива, и, таким образом, может быть уменьшена температура сгорания. Кроме того, так как отношение количества воздуха к количеству топлива меньше, чем теоретическое отношение количества воздуха к количеству топлива, можно охлаждать элементы вблизи камеры 10 сгорания (впускной клапан 8, выпускной клапан 9, седло клапана, поршень и т.д.) дополнительным топливом. Таким образом, надежность двигателя 1 внутреннего сгорания может быть увеличена.

Вариант 3 осуществления изобретения

В Варианте 3 осуществления изобретения используется патрубок 22 как часть трубки для подачи вторичного воздуха. Как показано на фиг.11, питающий клапан 74, соединенный с трубкой 72 для подачи воздуха, прикреплен к патрубку 22. За исключением этого отличия в конструкции Вариант 3 осуществления изобретения по существу аналогичен Варианту 1 осуществления изобретения. Соответственно, подробное описание Варианта 3 осуществления изобретения дано в соответствии с подробным описанием со ссылками на фиг.1-9 относительно Варианта 1 осуществления изобретения. Питающий клапан 74 действует как отражающая секция 21b патрубка 22. В этом варианте осуществления изобретения канал 71 подачи воздуха сообщается с выпускным каналом 16 через ответвленную секцию 21. Трубка 72 для подачи воздуха может быть вставлена между соединительной частью выпускного канала 16 и патрубком 22 и концевой частью патрубка 22.

В выпускном устройстве 5 в этом варианте осуществления изобретения, когда выпускной клапан 9 открыт, питающий клапан 74 закрыт. Таким образом, скачок уплотнения может быть отражен питающим клапаном 74. Когда отрицательное давление создается в выпускном канале 16 действием сужающегося-расширяющегося сопла 31, питающий клапан 74 открывается и воздух может поступать в выпускной канал 16 через ответвленную секцию 21. В этом варианте осуществления изобретения достаточное количество воздуха также может быть подано в выпускной канал 16.

В этом варианте осуществления изобретения нет необходимости в формировании канала, действующего исключительно в качестве ответвленной секции 21. Таким образом, выпускное устройство 5 в этом варианте осуществления изобретения дешевле, чем выпускное устройство 5 с использованием специально используемой ответвленной секции 21 (например, выпускное устройство 5 в Варианте 2 осуществления изобретения).

Вариант 4 осуществления изобретения

Как показано на фиг.12, в Варианте 4 осуществления изобретения патрубок 22 используется как часть сужающегося-расширяющегося сопла. За исключением этого отличия конструкции, Вариант 4 осуществления изобретения является аналогичным Варианту 1 осуществления изобретения. Соответственно, подробное описание Варианта 4 осуществления изобретения дано подробным описанием фиг.1-9 относительно Варианта 1 осуществления изобретения. В Вариантах 1 и 2 осуществления изобретения сужающаяся секция 32, горловинная секция 34 и расширяющаяся секция 33 сформированы в части выпускного канала 16, которая находится дальше по потоку относительно ответвленной секции 21. Однако в результате продолжения активных изучений авторы придумали конструкцию, обеспечивающую аналогичный эффект с более простой конструкцией. В этом варианте осуществления изобретения для генерирования распространяющегося скачка 35b уплотнения, который является новым скачком уплотнения, применена ответвленная секция 21 для отражения и распространения скачка 35 уплотнения назад в выпускной канал 16. При рассмотрении этой ответвленной секции 21 с другой точки зрения отметим, что выпускной канал 16 имеет площадь поперечного сечения для потока, увеличенную в местоположении ответвленной секции 21 и уменьшенную дальше по потоку относительно этого местоположения. Другими словами, сужающаяся секция 32 и горловинная секция 34 сформированы в выпускном канале ответвленной секцией 21. В случае когда площадь поперечного сечения А5 для потока части выпускного канала 16, которая находится ближе по потоку относительно входа 21а ответвленной секции 21, приблизительно равна площади поперечного сечения А7 для потока части выпускного канала 16, которая находится дальше по потоку относительно входа 21а ответвленной секции 21, существует следующая зависимость. Как показано на фиг.12, сумма площади поперечного сечения А5 для потока части выпускного канала 16, которая находится ближе по потоку относительно входа 21а ответвленной секции 21, и площади поперечного сечения А4 для потока ответвленной секции 21 больше, чем площадь поперечного сечения А7 для потока части выпускного канала 16, которая находится дальше по потоку относительно входа 21а. В частности, А4+А5>А7. Соответственно, можно считать, что сужающаяся секция 32 и горловинная секция 34 сформированы дальше по потоку относительно входа 21а. Таким образом, просто посредством расположения расширяющейся секции 33 дальше по потоку относительно входа 21а, по существу может быть сформировано сужающееся-расширяющееся сопло 31. А6 представляет площадь поперечного сечения для потока расширяющейся секции 33, и А7<А6. Часть между входом 21а и расширяющейся секцией 33 является горловинной секцией 34. Горловинная секция 34 может иметь длину вдоль направления потока, как показано здесь. Площадь поперечного сечения для потока сужающейся секции 32 и расширяющейся секции 33 не ограничена плавным изменением в направлении потока и может изменяться ступенчато.

В Вариантах 1-4 осуществления изобретения двигатель 1 внутреннего сгорания переводит отработанный газ в состояние низкого давления и низкой температуры следующим способом. Топливо воспламеняется в камере 10 сгорания. Выпускной клапан 9 для открытия или закрытия выпускного отверстия 9а камеры 10 сгорания открывается для выпуска отработанного газа 36 в выпускной канал 16 из камеры 10 сгорания. Создается скачок 35 уплотнения, распространяющийся в выпускном канале 16 с более высокой скоростью, чем отработанный газ 36. По меньшей мере, часть скачка 35 уплотнения ответвляется из выпускного канала 16, и ответвленный скачок 35 уплотнения распространяется назад в выпускной канал 16 для столкновения скачка 35 уплотнения с отработанным газом, таким образом увеличивающего давление отработанного газа. Площадь поперечного сечения для потока выпускного канала 16 уменьшена для увеличения давления отработанного газа 36. А именно давление отработанного газа увеличено посредством направления отработанного газа в часть выпускного канала 16, в которой площадь поперечного сечения для потока уменьшается в направлении потока. Кроме того, скорость отработанного газа 36 увеличивается посредством увеличения площади поперечного сечения для потока выпускного канала 16. А именно скорость отработанного газа увеличивается благодаря направлению отработанного газа в часть выпускного канала 16, в которой площадь поперечного сечения для потока увеличена в направлении потока. Создается новый скачок 35b уплотнения, распространяющийся в направлении потока в выпускном канале 16, для формирования области отрицательного давления в выпускном канале 16. Отработанный газ переводится в состояние низкого давления и низкой температуры эффектом адиабатического охлаждения, вызванным адиабатическим расширением. Таким образом, отработанный газ может быть переведен в состояние низкого давления и низкой температуры, даже когда двигатель 1 внутреннего сгорания работает в состоянии высокой нагрузки или высокой скорости.

Со ссылками на фиг.13 и фиг.14 будет описан более подробно описанный выше способ выпуска для двигателя внутреннего сгорания. На фиг.13 показана зависимость между скоростью отработанного газа и давлением отработанного газа в выпускном канале 16 во временной последовательности. На фиг.14 показана зависимость между давлением отработанного газа и температурой отработанного газа в выпускном канале 16 во временной последовательности. Формы волны, показанные на фиг.7, представляют зависимость между скоростью отработанного газа и давлением отработанного газа, когда скачок уплотнения ускоряется, как показано на фиг.13(С). На фиг.13(А) и фиг.14(А) показана соответствующая зависимость непосредственно после того, как выпускной канал открыт. На фиг.13(В) и фиг.14(В) показана соответствующая зависимость непосредственно после того, как отработанный газ и скачок уплотнения сталкиваются друг с другом дальше по потоку относительно ответвленной секции 21. На фиг.13(С) и фиг.14(С) показана соответствующая зависимость, когда скачок уплотнения ускоряется в расширяющейся секции 33. На фиг.13(D) и фиг.14(D) показана соответствующая зависимость после того, как скачок уплотнения ускорен.

Способ выпуска для двигателя внутреннего сгорания в этом варианте осуществления изобретения состоит в следующем.

1) Топливо воспламеняется в камере 10 сгорания. При открытии выпускного отверстия 9а в камере 10 сгорания отработанный газ проходит в выпускной канал 16 из камеры 10 сгорания, и также создается скачок уплотнения, распространяющийся в выпускном канале 16 с более высокой скоростью, чем отработанный газ. На фиг.13(А) показаны скорость отработанного газа и давление отработанного газа непосредственно после того, как выпускной канал 9а открыт. Как показано на фиг.13(А), когда выпускной канал 9а открыт, давление отработанного газа вблизи выпускного отверстия 9а становится более высоким, чем атмосферное давление. На фиг.14(А) показаны давление отработанного газа и температура отработанного газа непосредственно после того, как выпускной канал 9а был открыт. Как показано на фиг.14(А), температура отработанного газа становится очень высокой за счет получения тепла сгорания.

2) Ответвленная секция 21 ответвляет, по меньшей мере, часть скачка уплотнения, распространяющегося в выпускном канале 16, от выпускного канала 16. Отражающая секция 21b ответвленной секции 21 отражает ответвленный скачок уплотнения. Отраженный скачок уплотнения распространяется в ответвленную секцию 21 и снова в выпускной канал 16. Отраженный скачок уплотнения сталкивается с отработанным газом, проходящим в выпускном канале 16, что увеличивает давление отработанного газа. Площадь поперечного сечения для потока выпускного канала 16 уменьшена в сужающейся секции 32, что увеличивает давление отработанного газа. Может происходить первым или увеличение давления отработанного газа, вызванное столкновением скачка уплотнения и отработанного газа, или увеличение давления отработанного газа, вызванное уменьшением площади поперечного сечения для потока. В частности, столкновение скачка уплотнения и отработанного газа может происходить перед тем или после того, как давление отработанного газа увеличено в сужающейся секции 32. На фиг.13(В) показаны скорость отработанного газа и давление отработанного газа непосредственно после того, как давление отработанного газа увеличено. Как показано на фиг.13(В), вблизи сужающейся секции 32 давление отработанного газа более высоко, чем в этот момент на фиг.13(А). Ближе по потоку относительно сужающейся секции 32, скорость отработанного газа более высока, чем в этот момент на фиг.13(А). На фиг.14(В) показаны давление отработанного газа и температура отработанного газа непосредственно после того, как давление отработанного газа увеличено. Как показано на фиг.14(В), температура отработанного газа ниже вблизи выпускного отверстия 9а, но более высока ближе по потоку относительно сужающейся секции 32, чем в момент времени на фиг.14(А).

3) Площадь поперечного сечения для потока выпускного канала 16 увеличена в расширяющейся секции 33 для уменьшения давления отработанного газа. Когда давление отработанного газа уменьшено до уровня, равного или ниже, чем критическое отношение давлений, создается новый скачок уплотнения, распространяющийся в направлении потока в выпускном канале 16. Когда создается скачок уплотнения, создается волна разрежения, одновременно распространяющаяся в направлении против потока. Новый скачок уплотнения ускоряется в расширяющейся секции 33. Таким образом, текучая среда, находящаяся в пространстве между скачком уплотнения, распространяющимся в направлении потока в выпускном канале 16, и волной разрежения, распространяющейся против потока в выпускном канале 16, быстро расширяется. Это может уменьшать давление отработанного газа, проходящего в выпускном канале 16. Таким образом, область отрицательного давления может генерироваться в выпускном канале 16. В этой точке температура отработанного газа может быть уменьшена ближе по потоку относительно скачка уплотнения эффектом адиабатического охлаждения, вызванным адиабатическим расширением. На фиг.13(С) показаны скорость отработанного газа и давление отработанного газа, когда скачок уплотнения ускоряется в расширяющейся секции. Как показано на фиг.13(С), давление отработанного газа быстро уменьшается относительно давления, показанного на фиг.13(В), ближе по потоку относительно расширяющейся секции 33, становясь отрицательным давлением. Одновременно с этим быстро увеличивается скорость отработанного газа ближе по потоку относительно расширяющейся секции 33. На фиг.14(С) показаны давление отработанного газа и температура отработанного газа, когда скачок уплотнения ускоряется в расширяющейся секции 33. Как показано на фиг.14(С), одновременно с уменьшением давления отработанного газа ближе по потоку относительно расширяющейся секции 33 температура отработанного газа быстро уменьшается относительно температуры, показанной на фиг.14(В).

На фиг.13(D) показаны скорость отработанного газа и давление отработанного газа после того, как скачок уплотнения ускорен. Как показано на фиг.13(D), влияние давления отработанного газа, которое уменьшено ближе по потоку относительно расширяющейся секции 33 в момент, показанный на фиг.13(С), воздействует даже на выпускное отверстие 9а ближе по потоку относительно сужающейся секции 32. Таким образом, давление отработанного газа становится отрицательным давлением также вблизи выпускного отверстия 9а. На фиг.14(D) показаны давление отработанного газа и температура отработанного газа после того, как скачок уплотнения ускорен. Как показано на фиг.14(D), так как давление отработанного газа становится отрицательным давлением также вблизи выпускного отверстия 9а, температура отработанного газа также может быть значительно уменьшена вблизи выпускного отверстия. Это также может охлаждать выпускной клапан 9 и сдерживать его изнашивание.

Как показано на фиг.14, температура отработанного газа дальше по потоку относительно расширяющейся секции 33 значительно не изменяется. Другими словами, поскольку отработанный газ высокой температуры вблизи выпускного отверстия 9а, показанный на фиг.14(А), охлажден эффектом адиабатического охлаждения в расширяющейся секции 33, может предотвращаться изменение температуры отработанного газа дальше по потоку относительно расширяющейся секции 33.

В примере, показанном на фиг.13 и фиг.14, первый катализатор 17 и второй катализатор 18 расположены дальше по потоку относительно расширяющейся секции 33. Так как изменение температуры отработанного газа дальше по потоку относительно расширяющейся секции 33 может предотвращаться, как описано выше, можно предотвращать чрезмерное увеличение температуры отработанного газа, проходящего первый катализатор 17 и второй катализатор 18. Это может предотвращать спекание катализаторов, даже когда двигатель 1 внутреннего сгорания работает в диапазоне высоких нагрузок и частот вращения.

Когда подключен канал подачи вторичного воздуха для подачи вторичного воздуха в область, в которой создается отрицательное давление, в выпускной канал может подаваться вторичный воздух. В частности, как показано на фиг.13(С) и фиг.13(D), после того как скачок 35b уплотнения ускорен, ближе по потоку относительно расширяющейся секции 33 создается область отрицательного давления. Таким образом, благодаря соединению канала подачи вторичного воздуха ближе по потоку относительно расширяющейся секции 33, в выпускной канал 16 может подаваться вторичный воздух.

Другие варианты осуществления изобретения

Не существует каких-либо ограничений применения двигателя внутреннего сгорания, соответствующего настоящему изобретению. Двигатель внутреннего сгорания, согласно настоящему изобретению, может применяться, например, для транспортного средства, такого как мотоцикл или как забортный двигатель, установленный на морском судне. Настоящее изобретение применимо для любого из многих различных типов двигателей внутреннего сгорания.

На фиг.15 показано морское судно, имеющее установленный на нем двигатель внутреннего сгорания, соответствующий настоящему изобретению. В частности, на фиг.15 показано морское судно 100, имеющее установленные на нем два забортных двигателя 101, каждый из которых представляет собой двигатель 1 внутреннего сгорания согласно настоящему изобретению. Забортные двигатели 101 прикреплены к корме 103 морского судна 100 и могут сообщать движение морскому судну. Выпускной канал каждого забортного двигателя 101 расположен под поверхностью воды, и отработанный газ выпускается из выпускного канала в воду. На фиг.16 показано транспортное средство, имеющее установленный на нем двигатель внутреннего сгорания согласно настоящему изобретению. В частности, на фиг.16 показан мотоцикл 200, имеющий двигатель 1 внутреннего сгорания, расположенный в центре его корпуса. Не существует какого-либо ограничения применения двигателя внутреннего сгорания согласно настоящему изобретению.

Двигатель 1 внутреннего сгорания в каждом из вышеупомянутых вариантов осуществления изобретения содержит по одному выпускному устройству 5 для каждой камеры 10 сгорания. В альтернативном варианте может применяться несколько выпускных устройств 5 для одной камеры 10 сгорания. Двигатель внутреннего сгорания, согласно настоящему изобретению, может быть многоцилиндровым двигателем, при условии, что расширяющаяся секция соединена только с одной камерой 10 сгорания ближе по потоку относительно расширяющейся секции. Например, в случае с двигателем с двумя цилиндрами каждый цилиндр может иметь отдельный выпускной канал, и ответвленная секция для отражения скачка уплотнения и расширяющаяся секция могут быть применены в каждом цилиндре. Даже в случае с трехцилиндровым двигателем или с двигателем с большим количеством цилиндров каждый цилиндр имеет отдельный выпускной канал, и ответвленная секция для отражения скачка уплотнения и расширяющаяся секция также применены для каждого цилиндра. Благодаря такой конструкции даже в многоцилиндровом двигателе давление отработанного газа может быть уменьшено ближе по потоку относительно расширяющейся секции каждого выпускного канала без влияния отработанного газа из других цилиндров.

В Варианте 1 осуществления изобретения, благодаря ускорению скачка уплотнения в сужающемся-расширяющемся сопле, отрицательное давление создается ближе по потоку относительно скачка уплотнения, и давление отработанного газа и, таким образом, температура отработанного газа могут быть уменьшены эффектом адиабатического охлаждения, вызванным адиабатическим расширением. В Варианте 1 осуществления изобретения между сужающейся секцией и расширяющейся секцией предусмотрена часть, имеющая постоянную площадь поперечного сечения для потока. Благодаря заданию длины части, имеющей постоянную площадь поперечного сечения для потока, между сужающейся секцией и расширяющейся секцией в соответствии с двигателем внутреннего сгорания, моменты времени, в которые скачок уплотнения должен быть ускорен в расширяющейся секции, другими словами, моменты времени, в которые давление и температура отработанного газа должны быть уменьшены, могут быть заданы в соответствии с двигателем внутреннего сгорания.

В Варианте 2 осуществления изобретения применен воздушный канал для подачи вторичного воздуха в выпускной канал. Таким образом, вторичный воздух может эффективно подаваться в выпускной канал с использованием отрицательного давления, создаваемого ближе по потоку относительно скачка уплотнения. Это может эффективно уменьшить температуру отработанного газа. В случае когда катализатор расположен дальше по потоку относительно сужающегося-расширяющегося сопла, может быть уменьшена температура отработанного газа, проходящего катализатор. Это может, например, предотвращать спекание катализатора.

В Варианте 3 осуществления изобретения воздух подается к ответвленной секции 21. Таким образом, канал, действующий исключительно как ответвленная секция 21, не формируется.

Благодаря этому, по сравнению с Вариантом 1 осуществления изобретения и Вариантом 2 осуществления изобретения, в которых используется специальная ответвленная секция 21, затраты уменьшены, и степень свободы компоновки может быть увеличена.

В Варианте 4 осуществления изобретения новый скачок уплотнения может генерироваться более простой конструкцией.

Описание ссылочных позиций

1 - Двигатель внутреннего сгорания.

5 - Выпускное устройство.

9 - Выпускной клапан.

9а - Выпускное отверстие.

10 - Камера сгорания.

16 - Выпускной канал.

21 - Ответвленная секция.

21а - Вход ответвленной секции.

21b - Отражающая секция.

31 - Сужающееся-расширяющееся сопло.

32 - Сужающаяся секция.

33 - Расширяющаяся секция.

34 - Горловинная секция.

35 - Скачок уплотнения.

35с - Волна разрежения.

36 - Отработанный газ.

101 - Забортный двигатель.

200 - Мотоцикл.

1. Двигатель внутреннего сгорания, содержащий:
камеру сгорания, имеющую выпускное отверстие;
выпускной клапан для открытия или закрытия выпускного отверстия; и
выпускное устройство, имеющее выпускной канал для направления отработанного газа, выпускаемого из камеры сгорания через выпускное отверстие;
при этом:
выпускное устройство содержит:
сужающуюся секцию, имеющую площадь поперечного сечения для потока, меньшую на ее выходном конце, чем на ее входном конце;
расширяющуюся секцию, расположенную дальше по потоку относительно сужающейся секции и имеющую площадь поперечного сечения для потока, большую на ее выходном конце, чем на ее входном конце; и
ответвленную секцию для ответвления скачка уплотнения, распространяющегося в направлении потока в выпускном канале с более высокой скоростью, чем отработанный газ, проходящий в выпускной канал из камеры сгорания, когда выпускной клапан открыт, из части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции, и распространения ответвленного скачка уплотнения назад в выпускной канал;
причем расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно расширяющейся секции;
отработанный газ, проходящий в выпускной канал из камеры сгорания, сталкивается со скачком уплотнения, который отражается в ответвленной секции перед расширяющейся секцией, и проходит через сужающуюся секцию, таким образом, увеличивая давление отработанного газа в сужающейся секции; и
отработанный газ проходит через расширяющуюся секцию для создания нового скачка уплотнения, и в выпускном канале новым скачком уплотнения создается отрицательное давление ближе по потоку относительно расширяющейся секции.

2. Двигатель внутреннего сгорания, содержащий:
камеру сгорания, имеющую выпускное отверстие;
выпускной клапан для открытия или закрытия выпускного отверстия; и
выпускное устройство, имеющее выпускной канал для направления отработанного газа, выпускаемого из камеры сгорания через выпускное отверстие;
при этом:
выпускное устройство содержит:
сужающуюся секцию, имеющую площадь поперечного сечения для потока, меньшую на ее выходном конце, чем на ее входном конце;
расширяющуюся секцию, расположенную дальше по потоку относительно сужающейся секции и имеющую площадь поперечного сечения для потока, большую на ее выходном конце, чем на ее входном конце; и
ответвленную секцию, ответвленную от части выпускного канала, которая находится ближе по потоку относительно расширяющейся секции и имеющую отражающую секцию, способную отражать скачок уплотнения;
причем расширяющаяся секция соединена только с одной камерой сгорания, расположенной ближе по потоку относительно расширяющейся секции;
причем скорость отработанного газа, выпускаемого из камеры сгорания, когда выпускной клапан открыт, составляет Ve, а скорость распространения скачка уплотнения, распространяющегося в выпускном канале, составляет Vs, при этом расстояние Le между выпускным отверстием и входом ответвленной секции и расстояние Ls между входом ответвленной секции и отражающей секцией удовлетворяет отношению:
Le/Ve≤(Le+2Ls)/Vs; и
когда время от момента, когда выпускное отверстие открыто, до момента, когда выпускное отверстие закрыто, составляет tv, расстояние Ld между входом ответвленной секции и расширяющейся секцией удовлетворяет отношению:
(Le+2Ls+Ld)/Vs≤tv+(Le+Ld)/Ve.

3. Двигатель по п.1 или 2, в котором выпускной канал дополнительно содержит часть, имеющую постоянную площадь поперечного сечения для потока между сужающейся секцией и расширяющейся секцией.

4. Способ выпуска для двигателя внутреннего сгорания, включающий этапы, на которых:
воспламеняют топливо в камере сгорания;
открывают выпускное отверстие камеры сгорания для выпуска отработанного газа из камеры сгорания в выпускной канал и создания скачка уплотнения, распространяющегося в выпускном канале с более высокой скоростью, чем отработанный газ;
ответвляют, по меньшей мере, часть скачка уплотнения из выпускного канала и отражают ответвленный скачок уплотнения назад в выпускной канал для обеспечения столкновения скачка уплотнения с отработанным газом, таким образом, увеличивая давление отработанного газа;
направляют отработанный газ в часть выпускного канала, имеющую площадь поперечного сечения, которая уменьшается в направлении потока, таким образом увеличивая давление отработанного газа; и
направляют отработанный газ в часть выпускного канала, имеющую площадь поперечного сечения, которая увеличивается в направлении потока, таким образом создавая новый скачок уплотнения, распространяющийся в направлении потока в выпускном канале, для создания области отрицательного давления в выпускном канале.

5. Транспортное средство, содержащее двигатель внутреннего сгорания по п.1 или 2.

6. Морское судно, содержащее двигатель внутреннего сгорания по п.1 или 2.

7. Двигатель внутреннего сгорания, использующий способ выпуска по п.4.



 

Похожие патенты:

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к двигателестроению и предназначено для нейтрализации и разбавления выбросов в окружающую среду выхлопных газов от двигателей внутреннего сгорания.

Изобретение относится к машиностроению, а именно к двигателестроению, и может быть использовано для очистки отработавших газов двигателей внутреннего сгорания как с воспламенением от сжатия, так и с принудительным воспламенением.

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к многоцилиндровым двигателям внутреннего сгорания, которые могут быть использованы на транспортных средствах, в частности на морских судах.

Изобретение относится к устройству для обработки или снижения токсичности потока отработавших газов (ОГ), проводимой в заданном температурном интервале. .

Изобретение относится к системе выпуска отработанных газов дизельного двигателя и к способу десульфатации нейтрализатора NOx этой системы. .

Изобретение относится к способам регенерации устройств очистки отработавших газов, используемых в двигателях внутреннего сгорания. .
Наверх