Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов. Технический результат: повышение информативности диагностирования путем использования в качестве параметров диагностирования показателей переходного процесса, так как они обладают высокой чувствительностью к изменению параметров электрической цепи. Сущность: измеряют мгновенные значения напряжения на последовательно включенной в диагностируемую электрическую цепь емкости в течение переходного процесса при подаче постоянного напряжения на электрическую цепь. В качестве параметров диагностирования используют показатели переходного процесса. Сравнивая их с номинальными значениями параметров, можно судить о наличии дефектов. 7 з.п. ф-лы, 1 табл., 5 ил.

 

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Известным является способ диагностирования электрических цепей, в частности, автомобильного электрооборудования по наличию тока в электрической цепи при подключении к источнику напряжения [Ютт В.Е. Электрооборудование автомобилей. - М.: Транспорт, 2001. - 287 с., ил.].

Недостатком такого способа является невозможность диагностировать дефекты электрической цепи, в частности, автомобильного электрооборудования, не влекущие за собой разрыв электрической цепи.

Известен способ диагностирования, выбранный за прототип, использующий в качестве параметра диагностирования постоянную времени тока переходного процесса в диагностируемой электрической цепи [RU 2314432 C2]. При этом измеряют мгновенные значения тока в течение переходного процесса при подаче постоянного напряжения на автомобильное электрооборудование и рассчитывают постоянную времени.

Недостатком указанного способа является погрешности определения постоянной времени по экспоненте, которая является плавной кривой, что приводит к существенным ошибкам. К примеру на фиг.2 показан переходный процесс - кривая 1 для принятых значений Tфакт=1 с и Uуст.факт=1, где Tфакт - фактическое значение постоянной времени, Uуст.факт - установившееся значение выходной величины в относительных единицах; установившееся значение выходной величины показано прямой 2. Прямой 3 показано значение 0,95Uуст.факт. Из фиг.2 и проведенных расчетов следует, что значение 0,95 достигается при t=3Tфакт=3 с, где Tфакт=1 c.

Если установившееся значение измеряется с погрешностью -2%, т.е. измеренное значение составляет Uуст.изм.1=0,98. Тогда 0,95Uуст.изм.1=0,931, это значение показано прямой 4. Из фиг.2 и проведенных расчетов следует, что значение 0,931 будет достигаться за время tизм.1=3Тизм.1=2,66 с, тогда значение постоянной времени будет равно Тизм.1=0,887, следовательно, погрешность измерения составит Δ%=11,3%.

Если установившееся значение измеряется с погрешностью +2%, т.е. измеренное значение составляет Uуст.изм.2=1,02. Тогда значение 0,95Uуст.изм.1=0,969, это значение показано прямой 5. Из фиг.2 и проведенных расчетов следует, что это значение будет достигаться за время tизм.2=3Тизм.2=3,47 с, тогда значение постоянной времени Тизм.2=1,157, а погрешность оценки составит Δ%=15,7%.

Техническим результатом является повышение информативности параметров диагностирования.

Технический результат достигается тем, что в способе диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, при подаче на электрическую цепь постоянного напряжения и сравнении значений измеряемых параметров с номинальными значениями параметров, в электрическую цепь дополнительно последовательно включена емкость, а в качестве параметров диагностирования используют показатели переходного процесса изменения напряжения на емкости, причем величину емкости выбирают по условию , где C - емкость, L - индуктивность, R - активное сопротивление, ξ - коэффициент выбирают в диапазоне от 0,1 до 0,05.

В качестве параметров диагностирования (фиг.1) могут быть использованы максимальное и минимальное амплитудные значения напряжения на емкости соответственно Xmax, Xmin; время t1, за которое напряжение на емкости первый раз достигает установившегося значения; разность между временем t2, за которое напряжение на емкости второй раз достигает установившегося значения, и временем t1, за которое напряжение на емкости первый раз достигает установившегося значения в переходном процессе в диагностируемой электрической цепи t2-t1, время вхождения кривой переходного процесса изменения напряжения на емкости t3 в заданную область отклонений от -Δ до +Δ; время tm, за которое напряжение на емкости достигает максимального значения в переходном процессе в диагностируемой электрической цепи; разность между максимальным и минимальным амплитудными значениями напряжения на емкости в переходном процессе в диагностируемой электрической цепи xmax-xmin, где xmax - максимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи, xmin - минимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи; относительное значение максимального динамического отклонения напряжения на емкости в переходном процессе , где xmax - максимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи, xуст - установившееся амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи.

Пример выполнения способа диагностирования электрических цепей, содержащих активное сопротивление и индуктивность.

На фиг.3 представлена схема измерения напряжения на емкости в диагностируемой электрической цепи, в качестве диагностируемого электрооборудования взята фазовая обмотка статора автомобильного генератора 94.3701 с параметрами L=0,001447 Гн, R=0,0373 Ом, к обмотке дополнительно подключена емкость С=2000 мкФ, величина которой выбрана из условия , где ξ=0,1. На фиг.4 и фиг.5 представлены осциллограммы напряжения переходного процесса в диагностируемой электрической цепи, с индексом «н» указаны номинальные параметры диагностирования, а с индексом «д» - параметры диагностирования с дефектом.

Схема измерения (фиг.3) состоит из последовательно соединенных источника постоянного напряжения - 1 (аккумуляторная батарея), коммутирующего устройства - 2, 3 - диагностируемой электрической цепи, дополненной последовательно включенной емкостью, измерительного устройства - 4, вход которого соединен с выходом коммутирующего устройства - 2 и регистрирующего устройства - 5 на базе ЭВМ.

Измерения производятся следующим образом: с помощью коммутирующего устройства - 2 диагностируемую электрическую цепь - 3 подключают к источнику постоянного напряжения - 1, при этом измерительный модуль - 4 производит высокочастотные измерения мгновенных значений напряжения на емкости, которые передаются на регистрирующее устройство - 5, где обрабатываются и хранятся. Результаты измерений напряжений переходного процесса представлены на фиг.4 и фиг.5: 1 - кривая переходного процесса изменения напряжения на емкости в диагностируемой электрической цепи с номинальными параметрами, 2 - кривая переходного процесса изменения напряжения на емкости в диагностируемой электрической цепи с дефектом.

В регистрирующем устройстве - 5 обрабатываются мгновенные значения напряжения и вычисляются указанные параметры диагностирования. В таблице приведены численные значения параметров диагностирования для диагностируемой электрической цепи с номинальными параметрами и для диагностируемой электрической цепи с дефектом. Как показали вычисления, значения указанных параметров диагностирования существенно изменяются при наличии дефекта в диагностируемой электрической цепи.

Таким образом, указанные параметры диагностирования переходного процесса изменения напряжения на емкости существенно зависят от параметров диагностируемой электрической цепи, что доказывает целесообразность их использования.

Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность
№ пп Параметр диагностирования Номинальное значение параметра диагностирования Значение параметра диагностирования при наличии дефекта
1 2 3 4
1 Xmax - максимальное амплитудное значение напряжения на емкости 1,966 1,968
2 Xmin - минимальное амплитудное значение напряжения на емкости 0,1 0,053
3 t1 - время, за которое напряжение на емкости первый раз достигает установившегося значения 8,64·10-4c 7,54·10-4 c
4 разность между временем t2, за которое напряжение на емкости второй раз достигает установившегося значения, и временем t1, за которое напряжение на емкости первый раз достигает установившегося значения в переходном процессе в диагностируемой электрической цепи t2-t1 17,12·10-4 с 14,85·10-4 с
5 t3 - время вхождения кривой переходного процесса изменения напряжения на емкости в заданную область отклонений от -Δ до +Δ 9,7·10-3 с 13,8·10-3 с
6 tm - время, за которое напряжение на емкости достигает максимального значения в переходном процессе в диагностируемой электрической цепи 17,42·10-4 с 14,85·10-4 с
7 разность между максимальным и минимальным амплитудными значениями напряжения на емкости в переходном процессе в диагностируемой электрической цепи xmax-xmin 1,866 1,915
8 относительное значение максимального динамического отклонения напряжения на емкости в переходном процессе 1,966 1,968

Источники информации

1. Абакумов Александр Михайлович. 443070. г. Самара, ул. Партизанская, д. 98, кв. 50.

2. Овсянников Владимир Николаевич. 443079. г. Самара, ул. Гагарина, д.45, кв.34.

3. Петинов Олег Всеволодович. 445020. г. Самарская обл., г.Тольятти, ул. Гидростроевская, д.19, кв.2.

4. Харымова Евгения Юрьевна. 446115. Самарская обл., г. Чапаевск, ул. Железнодорожная, д. 73 кв. 39.

1. Способ диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов, путем подачи на электрическую цепь постоянного напряжения и сравнения значений измеряемых параметров с номинальными значениями параметров, отличающийся тем, что в электрическую цепь дополнительно последовательно включают емкость, а в качестве параметров диагностирования используют показатели переходного процесса изменения напряжения на емкости, причем величину емкости выбирают по условию , где C - емкость, L - индуктивность, R - активное сопротивление, ξ - коэффициент выбирают в диапазоне от 0,1 до 0,05.

2. Способ по п.1, отличающийся тем, в качестве параметров диагностирования могут быть использованы максимальное и минимальное амплитудные значения напряжения на емкости соответственно Xmax, Xmin.

3. Способ по п.1, отличающийся тем, что в качестве параметра диагностирования используют время t1, за которое напряжение на емкости первый раз достигает установившегося значения.

4. Способ по п.1, отличающийся тем, что в качестве параметров диагностирования используют разность между временем t2, за которое напряжение на емкости второй раз достигает установившегося значения, и временем t1, за которое напряжение на емкости первый раз достигает установившегося значения в переходном процессе в диагностируемой электрической цепи t2-t1.

5. Способ по п.1, отличающийся тем, что в качестве параметра диагностирования используют время вхождения кривой переходного процесса изменения напряжения на емкости t3 в заданную область отклонений от -Δ до +Δ.

6. Способ по п.1, отличающийся тем, что в качестве параметра диагностирования используют время tm, за которое напряжение на емкости достигает максимального значения в переходном процессе в диагностируемой электрической цепи.

7. Способ по п.1, отличающийся тем, что в качестве параметра диагностирования используют разность между максимальным и минимальным амплитудными значениями напряжения на емкости в переходном процессе в диагностируемой электрической цепи xmax-xmin, где xmax - максимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи, xmin - минимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи.

8. Способ по п.1, отличающийся тем, что в качестве параметра диагностирования используют относительное значение максимального динамического отклонения напряжения на емкости в переходном процессе , где xmax - максимальное амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи, xуст - установившееся амплитудное значение напряжения на емкости в переходном процессе в диагностируемой электрической цепи.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано для определения неисправного состояния индуктивных обмоток электрических машин. .

Изобретение относится к электроизмерительной технике, в частности к контролю качества изоляции, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного двигателя или трансформатора.

Изобретение относится к контрольно-измерительной технике. .

Изобретение относится к способам шумовой диагностики электроэнергетического оборудования (ЭЭО). .

Изобретение относится к электротехнике и может быть использовано для определения неисправного состояния индуктивных обмоток электрических машин. .

Изобретение относится к области технической диагностики электрических машин и предназначено для диагностики состояния витковой изоляции статорных обмоток электродвигателей и обмоток возбуждения электрических машин.

Изобретение относится к электроизмерительной технике и может быть использовано при определении короткозамкнутых витков в обмотках электрических машин. .

Изобретение относится к электроизмерительной технике и может быть использовано при контроле электрических обмоток на наличие межвиткового короткого замыкания любых электрических машин: электродвигателей, генераторов, трансформаторов.

Изобретение относится к электроизмерительной технике и может быть использовано при контроле электрических обмоток на наличие короткозамкнутых витков. .

Изобретение относится к электроизмерительной технике и служит для контроля состояния изоляции силовых трансформаторов. .

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока

Изобретение относится к диагностированию изоляции токопроводников электрооборудования, в частности, электрической обмотки тягового двигателя

Изобретение относится к электроизмерительной технике и предназначено для определения группы и схемы соединения силовых двухобмоточных и трехобмоточных трансформаторов

Изобретение относится к электроэнергетике, в честности к контролю вторичной цепи измерительного трансформатора, соединен с компонентом электроэнергетической системы

Изобретение относится к технике эксплуатации турбогенераторов, предназначено для технического контроля состояния турбогенераторов (ТГ) и оборудования систем ТГ и может быть использовано для диагностирования турбогенераторов любой мощности с любой системой возбуждения

Изобретение относится к контрольно-измерительной технике и может быть использовано в устройствах для контроля электрических катушек в процессе производства

Изобретение относится к электротехнике и может быть использовано для определения неисправного состояния индуктивных обмоток электрических машин. Сущность изобретения заключается в том, что вспомогательная трехфазная электрическая цепь содержит в первой фазе конденсатор с переменной величиной емкости и последовательно подключенным к нему первым амперметром, во второй фазе резистор с переменной величиной сопротивления, а в третьей фазе диагностируемую индуктивную обмотку с последовательно подключенным к ней вторым амперметром. Полученную электрическую цель подключают к линейным выводам вторичной обмотки трансформатора, соединенной по схеме треугольник с регулируемым напряжением. Равенство показаний амперметров является признаком исправного состояния для всех подключаемых однотипных индуктивных обмоток. Технический результат - расширение возможности диагностики индуктивных обмоток. 3 ил.

Изобретение относится к технике электрических измерений и предназначено для определения качества компаундирования обмоток электрических машин на этапах испытания изоляции обмоток при изготовлении и эксплуатации, в частности обмоток статора маслонаполненных погружных асинхронных электродвигателей. Сущность: на объект измерений подают постоянное напряжение U и измеряют сопротивление R(t) объекта в течение времени, достаточного для достижения величины сопротивления практически установившегося значения. Затем определяют значения переходного тока i(t)=U/R(t). По кривой тока определяют диагностический признак оценки качества компаундирования обмотки в виде произведения экспериментальных значений основных характеристик компаунда (εa·ρv)экcп - абсолютной диэлектрической проницаемости и удельного объемного сопротивления соответственно, затем определяют критерий качества компаундирования Кk путем сравнения экспериментальных характеристик компаунда с его паспортными данными по формуле: . Технический результат: повышение объективности оценки качества компаундирования обмоток. 4 ил., 4 табл.

Изобретение относится к области испытаний обмоток якорей коллекторных электрических машин постоянного тока. Сущность: создают режим ударного импульсного возбуждения одновременно всех параллельных ветвей обмотки вращающегося якоря путем посылки импульсов напряжения возбуждения от генератора импульсных напряжений ГИН с частотой следования, например, 50 импульсов в секунду на коллектор относительно корпуса. Фиксируют наличие дефекта витковой изоляции с помощью индукционного датчика астатической конструкции с ферромагнитным сердечником, имеющим воздушный зазор-щель, ориентированный вдоль выводов витков у петушков коллектора секций с максимальными испытательными междувитковыми напряжениями в середине каждой параллельной ветви в силу симметрии обмоток якорей относительно места возбуждения, и измерителя импульсных магнитных полей с электронной ячейкой памяти по максимальным уровням импульсного магнитного поля, которые измеряют бесконтактным способом индукционным датчиком ИД с измерителем импульсных магнитных полей и фиксируют при срабатывании его электронной ячейки памяти в автоматическом режиме испытаний при каждом прохождении под датчиком ИД выводов витков дефектной секции и секций, непосредственно соединенных с ней уравнителями, и которые создаются только током в короткозамкнутом витке, возникающем под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре. Технический результат: фиксация наличия дефекта витковой изоляции, приводящего к образованию короткозамкнутого витка, возникающего под действием центробежных сил на обмотку и коллектор и вибрации только на вращающемся якоре. 11 ил.

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов

Наверх