Конструкция эжекционной градирни и способ организации процесса тепломассообмена

Изобретение относится к промышленной теплоэнергетике и может быть использовано в качестве охладителей оборотной воды и других жидких сред в различных отраслях промышленности. Эжекционная градирня содержит корпус в виде многогранной призмы, установленный на опорах, базирующихся вместе с поддоном водосборным на раме опорной, а в верхней части корпуса смонтирован выхлопной канал, состоящий из конфузора и диффузора, имеющего люк-лаз, ниже которого расположены трап-лестница и верхняя технологическая площадка, опоясывающая снаружи верх корпуса, внутри которого, на том же уровне установлен каплеуловитель. Основание корпуса имеет форму перевернутой усеченной пирамиды, боковую поверхность которой образуют наклонные водосливы с установленными на них водовоздушными эжекторами и, расположенной непосредственно под ними водораспределительной системой, причем входными окнами эжекторов служат отверстия, выполненные в плоскостях водосливов, по контуру внутренних кромок которых смонтированы ветровые перегородки, ограждающие пространство от водосливов до водосборного поддона, часть поверхности которого снаружи от ветровых перегородок полностью закрыта настилом, образующим нижнюю технологическую площадку. Каждый эжектор имеет струйно-вихревую форсунку, смонтированную в центре воздуховходного окна, по контуру которого сверху водослива приварено водоотбойное кольцо, а эжекционный канал установлен соосно с форсункой так, что между ним и плоскостью водослива оставлен дренажный зазор высотой 3-5 мм. Эжекционный канал имеет диаметр на 50-60 мм больше диаметра водоотбойного кольца и установлен так, что между ними образован кольцевой зазор. Изобретение позволяет повысить охлаждающую способность градирни, снизить материалоемкость конструкции, улучшить условия технического обслуживания агрегата. 2 н. и 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к промышленной теплоэнергетике и может быть использовано в качестве охладителей оборотной воды и других жидких сред в различных отраслях промышленности.

Известна эжекционная градирня, содержащая корпус, водоуловитель, воздуховходные и воздуховыходную шахты, В верхней и нижней части корпуса установлены коллекторы основного охлаждения с эжекционными форсунками, распыляющими воду и эжектирующими воздух. Корпус имеет четыре воздуховходные шахты, внутри корпуса расположены вертикальная перегородка и коллекторы предварительного охлаждения с форсунками, обращенными выходными отверстиями вверх, которые вместе с вертикальной перегородкой задают направление движения отработанного воздуха (см. патент RU №2187058 С1, F28C 1/00, 10.08.2002).

Такая градирня имеет следующие основные недостатки.

Затруднено техническое обслуживание форсунок и коллекторов предварительного охлаждения и других узлов внутри корпуса агрегата.

Зона выхода отработавшего воздуха расположена в непосредственной близости от входа верхней воздуховходной шахты.

Ориентация форсунок на двух коллекторах внутри корпуса в сторону водоуловителя увеличивает потери воды, связанные с каплеуносом.

Перерасход электроэнергии на увеличение объема эжектируемого воздуха, связанный с оттоком его части из градирни в местах, где периметры круглых факелов не касаются плоских стенок воздуховходной шахты.

Наиболее близкой по техническим решениям является эжекционная градирня, содержащая корпус с воздуховходными эжекционными окнами, выполненными в виде продольного канала и расположенными вдоль верхней кромки градирни, коллектор с форсунками, направленными вниз (см. патент RU №2166163, С2, F28C 1/00, 27.04.2001) - прототип.

Эта градирня также имеет ряд существенных недостатков.

Для обеспечения гидрозатвора в прямоугольном эжекционном канале взаимное перекрытие факелов составляет 60-70%. Исследования показывают, что перекрытие более 30% ведет к разрушению факелов, что снижает коэффициент эжекции и ухудшает охлаждающую способность градирни.

Установка форсунок в верхней части градирни снижает располагаемой напор перед форсунками на высоту градирни.

При направлении факелов вниз форсунка «простреливает» весь объем невысокой градирни почти мгновенно, тогда как процесс тепломассообмена в градирнях до полного насыщения воздуха занимает не менее 4-5 секунд, что требует увеличения- высоты агрегата до нескольких десятков метров. В результате растет материалоемкость конструкции и повышается потребный напор, сопровождающийся перерасходом электроэнергии.

При расположении эжекционных каналов в непосредственной близости от выхлопного канала градирни происходит постоянный подсос отработавшего влажного воздуха и непрерывная его рециркуляция, ухудшающая охлаждающую способность агрегата.

Задачами данного изобретения являются: повышение охлаждающей способности градирни; снижение энергоемкости процесса и материалоемкости конструкции; улучшение условий технического обслуживания агрегата.

Для решения поставленных задач предложены новая конструкция эжекционной градирни и способ организации процесса тепломасссообмена.

Предлагаемое изобретение позволяет достичь глубины охлаждения оборотной воды до уровня температуры воздуха по смоченному термометру плюс 4-5°. Снизить материалоемкость конструкции, так как ориентация эжекторов снизу вверх не требует большой высоты градирни. Снизить энергоемкость процесса в связи с понижением потребного давления до 0,2-0,25 МПа. Улучшить удобства технического обслуживания агрегата.

Принципиальная схема градирни представлена на фиг.1-3. На фиг.1 представлен продольный разрез градирни, на фиг.2 - поперечный разрез на фиг.1.

По схеме градирня имеет корпус 1 в виде многогранной призмы, смонтированной на опорах 2, базирующихся вместе с поддоном водосборным 3 на раме опорной 4. Основание корпуса имеет форму перевернутой усеченной пирамиды, гранями которой являются водосливы 5, изготовленные из металлических листов. В плоскостях водосливов выполнены отверстия, над которыми смонтированы водовоздушные эжекторы. Количество эжекторов определяется производительностью форсунки при заданном рабочим давлении и общим расходом охлаждаемой воды через градирню. Водораспределительная система находится непосредственно под водосливами и включает в себя несколько стояков 6 и коллекторов 7 в виде замкнутых многогранников, повторяющих форму корпуса и расположенных концентрично относительно его оси. Пространство между водосливами и поддоном водосборным закрыто ветровыми перегородками 8, установленными по контурам внутренних кромок водосливов. В одной из ветровых перегородок выполнена дверь 9. Снаружи от ветровых перегородок поддон покрыт сплошным настилом, образующим нижнюю технологическую площадку 10, В верхней части градирня имеет выхлопной канал для выхода паровоздушной смеси, состоящий из конфузора 11 и диффузора 12. В основании конфузора смонтирована верхняя технологическая площадка 13, опоясывающая верх корпуса снаружи. Внутри корпуса, на том же уровне, установлен каплеуловитель 14. На верхнюю технологическую площадку опирается трап-лестница 15, примыкающая к люк-лазу в стенке диффузора (люк-лаз на схеме не показан).

При установке градирни над заглубленным водосборным бассейном в ее конструкции отсутствует поддон водосборный.

Конструкция водовоздушного эжектора представлена на фиг.3.

В плоскостях водосливов выполнены круглые отверстия. В центре каждого отверстия размещена специальная струйно-вихревая форсунка 16, сориентированная вверх по оси эжектора с уклоном в сторону оси градирни.

По контуру каждого отверстия, являющегося одновременно входным окном эжектора, сверху над водосливом приварено водоотбойное кольцо 17.

Эжекционный канал 18, установлен соосно с форсункой и имеет дренажный зазор с водосливом высотой 3-5 мм. Исследования показывают, что не только наличие гидрозатвора, но и его местоположение существенно влияет на величину коэффициента эжекции. В этой связи высота эжекционного канала, зависящая от диаметра входного окна эжектора и угла раскрытия факела форсунки, установлена таковой, чтобы обеспечить гарантированный гидрозатвор между факелом и твердой стенкой эжекционного канала в зоне шириной 150 мм от верхней кромки канала. Диаметр эжекционного канала на 50-60 мм больше диаметра водоотбойного кольца, вследствие чего между ними остается кольцевой зазор шириной 25-30 мм. Эжекторы расположены рядами симметрично относительно коллекторов водораспределительной системы. Для того чтобы исключить разрушение факелов диспергированной жидкости соседних эжекторов при их пересечении на более близком расстоянии между ними, шаг установки эжекторов принят равным диаметру эжекционного канала плюс 50-100 мм.

Градирня очень удобна для технического обслуживания. С поверхности нижней технологической площадки 10 обеспечен свободный доступ к эжекторам и элементам водораспределительной системы даже во время работы агрегата, т.к. водосливы 5 защищают персонал от падающего дождя. Проникновение внутрь корпуса градирни осуществляется с поверхности этой же площадки через дверь 9. В объем выхлопного канала персонал попадает по трап-лестнице 15 через люк-лаз в стенке диффузора.

Такая конструкция градирни определяет и новый способ организации процесса тепломассообмена.

Нагретая вода под давлением подается в коллекторы 7 водораспределительной системы, из которых через форсунки 16 выталкивается в эжекционные каналы 18, в объеме которых происходит подсос необходимого количества атмосферного воздуха, после чего, в активной зоне градирни, в процессе теплоотдачи от нагретой воды к более холодному воздуху и частичного испарения воды происходит ее охлаждение.

Водяная пленка, образовавшаяся в зоне гидрозатвора, сползает вниз по стенкам эжекционного канала, а затем, омывая водоотбойное кольцо 17, стекает через дренажный зазор по наклонному водосливу 5. Таким образом, исключаются потери воды из эжекторов при их ориентации снизу вверх.

После эжекторов потоки диспергированной жидкости вместе с эжектированным воздухом движутся по криволинейным траекториям с уклоном к оси градирни. В верхней части градирни происходит многостороннее лобовое столкновение потоков, сопровождающееся многократным дроблением и витанием капель в процессе хаотического движения, то есть поток как бы зависает в объеме на некоторое время. После столкновения поток падает вниз в виде дождя. При этом некоторая часть эжектированного воздуха, насыщенного паром, из зоны столкновения уходит через выхлопной канал в атмосферу. Другая часть воздуха, увлекаемая дождем, движется вниз. У поверхности жидкости в водосборном поддоне 3 воздух поворачивает и, распределяясь по объему, устремляется в выхлопной канал градирни, «просеиваясь» между каплями свободно падающего дождя.

При таком способе организации процесса тепломассообмена время контакта фаз возрастает до 5 и более секунд. По ходу движения потоков можно выделить три зоны интенсивного тепломассообменна. Первая - в режиме активной турбулентности на участке от эжекторов до столкновения потоков. Вторая - зона столкновения потоков в режиме хаотического витания капель. Третья - зона свободно падающего дождя в режиме противотока с восходящими потоками воздуха.

Таким образом, помимо рациональной схемы процесса тепломассообмена, многократно увеличивающей время контакта фаз, высокую эффективность градирни обеспечивают и другие факторы.

Лобовое столкновение потоков в центре градирни играет значительную роль в общем процессе тепломассообмена.:

Наличие надежного гидрозатвора при работе каждой форсунки струйно-вихревого типа в свой эжекционный канал круглого сечения обеспечивает высокие коэффициенты эжекции и снижение рабочего давления до 0,2-0,25 МПа.

Через эжекторы в градирню поступает сухой атмосферный воздух, т.к. его увлажнению парами и капельной влагой препятствует локализация активной зоны градирни водосливами, ветровыми перегородками и сплошным настилом нижней технологической площадки.

В конструкции градирни зоны входа сухого атмосферного воздуха и выхлопа отработавшей паровоздушной смеси максимально удалены друг от друга, что предотвращает рециркуляцию влаги.

1. Эжекционная градирня, содержащая корпус в виде многогранной призмы, установленный на опорах, базирующихся вместе с поддоном водосборным на раме опорной, а в верхней части корпуса смонтирован выхлопной канал, состоящий из конфузора и диффузора, имеющего люк-лаз, ниже которого расположены трап-лестница и верхняя технологическая площадка, опоясывающая снаружи верх корпуса, внутри которого, на том же уровне, установлен каплеуловитель, отличающаяся тем, что основание корпуса имеет форму перевернутой усеченной пирамиды, боковую поверхность которой образуют наклонные водосливы с установленными на них водо-воздушными эжекторами и расположенной непосредственно под ними водораспределительной системой, причем входными окнами эжекторов служат отверстия, выполненные в плоскостях водосливов, по контуру внутренних кромок которых смонтированы ветровые перегородки, ограждающие пространство от водосливов до водосборного поддона, часть поверхности которого снаружи от ветровых перегородок полностью закрыта настилом, образующим нижнюю технологическую площадку.

2. Эжекционная градирня по п.1, отличающаяся тем, что каждый эжектор имеет струйно-вихревую форсунку, смонтированную в центре воздуховходного окна, по контуру которого сверху водослива приварено водоотбойное кольцо, а эжекционный канал установлен соосно с форсункой так, что между ним и плоскостью водослива оставлен дренажный зазор высотой 3-5 мм.

3. Эжекционная градирня по п.2, отличающаяся тем, что эжекционный канал имеет диаметр на 50-60 мм больше диаметра водоотбойного кольца и установлен так, что между ними образован кольцевой зазор.

4. Эжекционная градирня по любому из пп.1-3, отличающаяся тем, что высота эжекционного канала, зависящая от диаметра воздуховходного окна и угла раскрытия факела форсунки, установлена таковой, чтобы обеспечить гарантированный гидрозатвор между факелом и стенкой эжекционного канала в зоне шириной 150 мм от верхней кромки канала.

5. Эжекционная градирня по п.1, отличающаяся тем, что водораспределительная система включает в себя стояки и коллекторы в виде замкнутых многогранников, повторяющих форму корпуса, расположенных концентрично относительно его оси.

6. Эжекционная градирня по п.5, отличающаяся тем, что эжекторы расположены рядами симметрично относительно коллекторов, при этом шаг их установки равен диаметру эжекционного канала плюс 50-100 мм, что исключает разрушение факелов диспергированной жидкости при их пересечении на более близком расстоянии между ними.

7. Способ организации процесса тепломассобмена, состоящий в том, что при подаче форсункой охлаждаемой воды в объем градирни, в эжекционном канале происходит подсос необходимого количества атмосферного воздуха, после чего, в активной зоне градирни, в процессе теплоотдачи от нагретой воды к более холодному воздуху и частичного испарения воды, происходит ее охлаждение, а образовавшаяся в результате паровоздушная смесь уходит через выхлопной канал градирни опять в атмосферу, отличающийся тем, что каждая форсунка направленная вверх с уклоном к оси градирни подает охлаждаемую воду в свой индивидуальный эжекционный канал круглого сечения, обеспечивающий гарантированный гидрозатвор, после которого движение потоков диспергированной жидкости из каждого эжектора в режиме интенсивной турбулентности неизбежно приводит их к всестороннему лобовому столкновению в верхней части градирни, в результате которого происходит многократное дробление и витание капель в режиме хаотического движения и потоки как бы зависают в объеме на некоторое время, при этом часть эжектированного воздуха, насыщенного паром, уходит в выхлопной канал градирни, а другая часть, увлекаемая дождем, у поверхности жидкости в водосборном поддоне поворачивает и воздух, распределяясь по объему, также уходит в выхлопной канал, «просеиваясь» между каплями свободно падающего дождя.



 

Похожие патенты:

Изобретение относится к системе для охлаждения текучей среды. .

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Изобретение относится к теплоэнергетике, в частности к теплообменным аппаратам, и может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные и/или вентиляторные градирни.

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях. .

Изобретение относится к теплотехнике и может быть использовано на тепловых электрических станциях и промышленных предприятиях. .

Изобретение относится к теплоэнергетике, в частности к теплообменным аппаратам, и может быть использовано в системах оборотного водоснабжения тепловых электростанций и промышленных предприятий, где применяются башенные и/или вентиляторные градирни.

Изобретение относится к области теплообменных башен. .

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. .

Изобретение относится к теплоэнергетике, в частности к системам оборотного водоснабжения промышленных предприятий. .

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды.

Градирня // 2464513
Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды

Изобретение относится к испарительному охладителю для охлаждения газового потока, в частности воздушного потока, содержащему несколько охлаждающих элементов, расположенных в проточном канале, к которым посредством питающего устройства подводится подлежащая испарению или превращению в пар жидкость, преимущественно вода

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях

Изобретение относится к энергетике и может быть использовано на тепловых электрических станциях

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды

Изобретение относится к теплоэнергетике

Изобретение относится к теплоэнергетике, в частности к теплообменным устройствам, предназначенным для передачи тепла от теплоносителя к потребителю тепла, имеющему температуру более низкую, чем температура теплоносителя, и обеспечивающим таким образом охлаждение последнего

Изобретение относится к контактным охладителям, в частности к градирням, и может быть использовано на тепловых электрических станциях для охлаждения оборотной воды
Наверх