Способ обработки поверхности полимерных мембранных материалов



Способ обработки поверхности полимерных мембранных материалов
Способ обработки поверхности полимерных мембранных материалов
Способ обработки поверхности полимерных мембранных материалов
Способ обработки поверхности полимерных мембранных материалов

 


Владельцы патента RU 2467790:

Общество с ограниченной ответственностью "ИнтерФтор" (RU)

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов, полимерных мембран различного вида (гомогенных, композитных, половолоконных и т.д.) и изготовленных из них газоразделительных устройств с целью придания им улучшенных газоразделительных свойств. Поверхность полимерных мембранных материалов после обработки газообразной смесью фтора с инертным разбавителем обрабатывают смесью из газообразных аммиака, окиси азота и инертного разбавителя в течение не более 2 минут, а затем вакуумируют 5 минут или обдувают. Технический результат - данная обработка полимерных мембранных материалов позволяет быстро нейтрализовать фтористый водород, который адсорбируется на поверхности и в объеме полимерного мембранного материала после фторирования, и сохранять при длительном хранении сплошность и отсутствие механических повреждений на поверхности полимерных мембранных материалов, сохраняя таким образом их селективность газоразделения. 1 з.п. ф-лы, 3 табл., 3 пр., 2 ил.

 

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов, полимерных мембран различного вида (гомогенных, композитных, половолоконных и т.д.) и изготовленных из них газоразделительных устройств.

Известен способ модифицирования полимерных мембран [US 4759776, July 26, 1988; US 4657564, April 14, 1987], в котором модифицирование полимерных производных политриалкилсилилпропина и политриалкилгермилпропина и мембран на их основе происходит в потоке фторсодержащего газа при атмосферном давлении. Предлагается использовать модифицированные мембраны (гомогенные и гетерогенные плоские мембраны и мембраны, состоящие из полиолефиновой или полисульфоновой пористой подложки, покрытой с поверхности вышеупомянутыми полимерами) для разделения смеси газов O2/N2, He/CH4, H2/CH4, H2/CO, CO2/CH4, CO2/N2, H2/N2 и He/N2.

Известен способ модифицирования полимерных мембран на основе ароматических полиимидов [Pat. US №5112941, May 12, 1992] в котором модифицирование плоских мембран в виде пленок происходит при воздействии смесей фтора с HF, CF4 с целью улучшения селективности разделения смесей O2/N2, H2/CH4 и CO2/CH4.

Известен способ модифицирования полимерных мембран [Pat. US №4828585, May 9, 1989] на основе полисульфона, полистирола, полиарилата, поликарбоната, этилцеллюлозы, стиролакрилонитрильного сополимера, и поли (4-винилапизол-4винилпиридина), в котором модифицирование плоских гомогенных и композитных волокон и половолоконных мембран происходит при воздействии фтора либо его смесей с диоксидом серы с целью улучшения селективности разделения смесей О2/N2, N2/CH4 и СО2/СН4.

Известен способ химической модификации полимерной газоразделительной мембраны [SU 1776194, B01D 71/32, бюл. №42, 1992 г.], в котором мембраны из сополимера винилиденфторида с тетрафторэтиленом или гексафторпропиленом обрабатывают газообразной смесью. В качестве фторсодержащего агента используют летучий фторид тяжелого металла, выбранный из группы MoF6, WF6, UF6, VF5, и обработку осуществляют при содержании последнего 0-80 об.% и его давлении до 0,5 ата.

Известен способ модифицирования полимерных мембран в виде плоских гомогенных пленок поливинилтриметилсилана и полых волокон на основе полиимида Матримид® 5218 [D.A.Syrtsova, A.P.Kharitonov, V.V.Teplyakov, G.H.Koops, Improving gas separation properties of polymeric membranes based on glassy polymers by gas phase fluorination. Desalination, 163 (2004) 273-279; A.P.Kharitonov. Direct fluorination of polymers. Nova Science Publishers Inc. N.Y., 2008], принятый за прототип. Согласно этому способу модифицирование мембран происходит при воздействии смесей F2, Не и О2 с целью улучшения селективности разделения смесей Не/СН4 Не/N2 и СО2/CH4. Для исследования газотранспортных свойств полых полиимидных волокон использовались лабораторные имитации мембранных модулей, состоящие из 1-го до 3-х полых полиимидных волокон.

Наиболее близким к заявленному решению является способ модифицирования мембран для разделения смеси газов [RU 1754191, А1, B01D 71/32, бюл. №30, 1992 г.], включающий обработку газообразной смесью фтора с инертным разбавителем.

Общим недостатком всех вышеупомянутых способов является то, что при фторировании полимерных мембран на их поверхности и в объеме выделяется высокотоксичный фтористый водород (HF). Для удаления его из полимерной мембраны необходимы многократные чередующиеся циклы продувки реактора азотом и вакуумирования в течение не менее 1 часа. Однако даже после такой обработки около поверхности фторированной мембраны ощущается запах фтористого водорода. Кроме того, при фторировании полимерных мембран во фторированном слое формируются долгоживущие перекисные и фторрадикалы (см. фиг.1, кривая 1) в концентрациях до 1019-1021 радикалов на один грамм фторированного полимерного слоя, заметные концентрации которых в некоторых полимерах (например, в полиимиде) наблюдаются даже через 100 часов. Эти радикалы участвуют в медленных постреакциях, которые приводят к разрывам полимерных цепей и к образованию сшивок, что, со временем, приводит к деструкции и нарушению сплошности фторированного газоразделительного слоя на поверхности мембраны (см. фиг.2, а и 2, б) и резкому падению селективности газоразделения мембраны до величин, близких к 1.

Цель изобретения - быстрая нейтрализация фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерных мембран любого вида (плоские гомогенные и композитные, полые волокна), обработанных фторсодержащими газовыми смесями, сохранение при длительном хранении сплошности поверхности мембран и недопущение появления механических повреждений на поверхности мембран, сохраняя таким образом селективность газоразделения мембран.

Поставленная задача достигается тем, что после обработки поверхности полимерных мембранных материалов газообразной смесью фтора от 1 до 60 об.% с инертным разбавителем поверхности материалов дополнительно обрабатывают смесью из газообразных аммиака от 0,5 до 99 об.%, окиси азота NO и/или NO2 от 0,5 до 10 об.% и инертного разбавителя в течение не более 2 минут, а затем вакуумируют 5 минут или обдувают, причем, в качестве инертного разбавителя используют азот, гелий, аргон, двуокись углерода, воздух или их смесь.

Экспериментально было установлено, что кратковременная (в течение не более 2-х минут) обработка фторированных полимерных пленок окислами азота NO и NO2 приводит к полному разрушению долгоживущих радикалов (см. фиг.1, кривая 2). Поэтому долгоживущие радикалы не будут участвовать в постреакциях и не будут приводить к деструкции и нарушению сплошности фторированного газоразделительного слоя на поверхности мембраны или полого волокна. Проведенные электронно-микроскопические исследования показывают, что на поверхности полого волокна Матримид 5218, фторированного и обработанного газовой смесью NO (NO2)+NH3, после одного года хранения на воздухе не обнаружено видимых нарушений сплошности фторированного газоразделительного слоя (см. фиг.2, в).

Для быстрой нейтрализации фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерной мембраны, последнюю обрабатывают газообразным аммиаком NH3 с последующим вакуумированием или обдувкой каким-либо газом. Фтористый водород очень быстро реагирует с аммиаком с образованием твердого нетоксичного NH4F в виде мелкодисперсной наноразмерной пыли по уравнению

HF+NH3 → NH4F

Так как аммиак состоит из неполярных молекул, то он очень слабо адсорбируется на полимерной поверхности и легко удаляется при вакуумировании или при обдувании.

Для экспериментального подтверждения данного способа были использованы следующие полимерные мембранные материалы: отдельные плоские асимметричные мембраны из поливинилтриметалсилана (ПВТМС), полые асимметричные волокна из полиимида Матримид® 5218 и полые асимметричные волокна из поли(4-метилпентена-1) (ПМП). Обработке подвергались как сами полимерные мембранные материалы, упомянутые выше, так и изготовленные мембранные газоразделительные устройства, в которых находились пленки ПВТМС общей площадью 1 м2 и по 100-200 полых волокон длиной 30 см каждое в виде распушенного жгута.

Пример 1. Опыт 1 - фторирование способом по прототипу. Асимметричная мембрана из ПВТМС площадью 100 см2 была обработана смесью 33% F2 + 67% He при давлении 0,5 ати в течение 1 часа, после чего мембрана продувалась азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Мембрана обладала резким запахом фтористого водорода, адсорбированного на ее поверхности.

Опыт 1, а - фторирование по предлагаемому способу. Фторировали асимметричную мембрану из ПВТМС площадью 100 см2. Провели три опыта, режимы обработки приведены в таблице 1.

После обработки газообразной смесью аммиака мембрану вакуумировали в течение 5 минут (режим 1), продували азотом 3 мин (режим 2), продували гелием 5 мин (режим 3).

Запах фтористого водорода у мембраны полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности показало отсутствие дефектов на поверхности мембраны.

Пример 2. Опыт 2. Мембранное газоразделительное устройство, в котором находились 200 полых волокон полиимида Матримид 5218 длиной 30 см каждое в виде распушенного жгута, было обработано смесью 10% F2 + 90% He при давлении 0,5 ати в течение 10 минут. Затем устройство продувалось азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Волокна газоразделительного устройства обладали резким запахом фтористого водорода, адсорбированного на их поверхности.

Опыт 2, а - фторирование по предлагаемому способу. Фторировали мембранное газоразделительное устройство, в котором находились 200 полых волокон полиимида Матримид 5218 длиной 30 см каждое в виде распушенного жгута. Провели три опыта, режимы обработки приведены в таблице 2.

После обработки газообразной смесью аммиака мембраны продували аргоном 3 мин (режим 1), вакуумировали 5 мин (режим 2), продували кислородом 2 мин (режим 3).

Запах фтористого водорода у волокон полиимида полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности показало отсутствие дефектов на поверхности волокон (см. фиг.2, в).

Пример 3. Мембранное газоразделительное устройство, в котором находились 100 полых волокон ПМП длиной 30 см каждое в виде распушенного жгута, было обработано смесью 10% F2 + 90% He при давлении 0,5 ати в течение 10 минут. После этого устройство продувалось азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Волокна газоразделительного устройства обладали резким запахом фтористого водорода, адсорбированного на их поверхности.

Опыт 3, а - фторирование по предлагаемому способу. Фторировали мембранное газоразделительное устройство, в котором находились 100 полых волокон ПМП длиной 30 см каждое в виде распушенного жгута. Провели три опыта, режимы обработки приведены в таблице 3.

Таблица 3
Режимы обработки волокон ПМП
Фторирующая смесь* Азотосодержащая смесь Газообразная смесь аммиака
Состав, об.% Давление, ати Состав, об.% Время обработки, мин Концентрация, % Время обработки, мин
1 3% F2 + 97% Ar 0,2 2% NO2 + 98% Не 2 3 1
2 10% F2 + 90% He 0,5 1% NO + 99% Ar 2 15 3
3 50% F2 + 50% N2 0,1 1% NO + 1% NO2 + 98% воздух 1 95 0,5
Примечание. * - время обработки 10 мин

После обработки газообразной смесью аммиака мембраны продували двуокисью углерода 3 мин (режим 1), сжатым воздухом 4 мин (режим 2), кислородом 2 мин (режим 3).

Запах фтористого водорода у волокон ПМП полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности показало отсутствие дефектов на поверхности волокон.

Таким образом, проведенные эксперименты показали, что полимерные мембранные материалы различного вида (гомогенные, композитные, половолоконные и т.д.), фторированные газообразной смесью фтора с инертными разбавителями, после дополнительной обработки смесью из газообразных аммиака от 0,5 до 99 об.%, окиси азота NO и/или NO2 от 0,5 до 10 об.% и инертного разбавителя в течение не более 2 минут, а затем вакуумирования в течение 5 минут или обдува каким-либо газом быстро освобождаются от фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерного мембранного материала. Кроме того, после такой обработки, достигается сохранение в течение длительного времени сплошности поверхности мембран и недопущение появления механических повреждений на их поверхности, сохраняя таким образом селективность газоразделения мембран.

1. Способ обработки поверхности полимерных мембранных материалов, включающий обработку газообразной смесью фтора от 1 до 60 об.% с инертным разбавителем, отличающийся тем, что после обработки газообразной смесью фтора с инертным разбавителем поверхности материалов обрабатывают смесью из газообразных аммиака от 0,5 до 99 об.%, окиси азота NO и/или NO2 от 0,5 до 10 об.% и инертного разбавителя в течение не более 2 мин, а затем вакуумируют 5 мин или обдувают.

2. Способ по п.1, отличающийся тем, что в качестве инертного разбавителя используют азот, гелий, аргон, двуокись углерода, воздух или их смесь.



 

Похожие патенты:

Изобретение относится к композиционным мембранным материалам для очистки жидкости, в частности питьевой воды. .

Изобретение относится к технологии производства армированных мембран, в частности мембран для ультра- и микрофильтрации, используемых для осуществления барометрических процессов разделения растворов и суспензий.

Изобретение относится к технологии получения разделительных микропористых мембран, которые могут быть использованы для отделения таких молекул, как водород, азот, аммиак, вода, друг от друга и/или от малых органических молекул, таких как алканы, алканолы, простые эфиры и кетоны.

Изобретение относится к области синтеза палладиевых нанокристаллических катализаторов в виде мембран. .
Изобретение относится к способу получения анионообменных мембран с улучшенными массообменными характеристиками, применяемых в электродиализных аппаратах для переработки различных растворов, получения высокочистой воды и регулирования рН обрабатываемого раствора.
Изобретение относится к мембранным процессам выделения органических соединений из растворов. .

Изобретение относится к области получения фильтровальных материалов и может быть использовано в медицине, фармацевтике, биотехнологии, электронной, химической и пищевой промышленности.
Изобретение относится к способу получения микрофильтрационной положительно заряженной мембраны, которая может быть использована при разделении растворов в микробиологической, биохимической и фармацевтической промышленности, а также при очистке сточных вод.

Изобретение относится к области получения мембранных материалов для ультра- и микрофильтрации жидких и газообразных сред и может быть использовано в медицине, биотехнологии, фармацевтике, микробиологии, пищевой промышленности.

Изобретение относится к композиционным мембранным материалам для очистки жидкости, в частности питьевой воды. .

Изобретение относится к микроструктурным технологиям. .

Изобретение относится к области мембранной технологии, а именно к способам изготовления микро- и ультрафильтрационных мембран, а именно к способам изготовления трековых мембран.

Изобретение относится к технологии получения плоской пористой гидрофильной мембраны из полиэфирсульфона с размером пор от 0,1 до 1 мкм для производства из нее дисковых плоских и патронных гофрированных фильтрующих элементов.

Изобретение относится к способу получения полимерной мембраны, преимущественно для ультрафильтрации и нанофильтрации, а также к мембране, изготовленной этим способом, и к применению такой мембраны для ультрафильтрации или для нанофильтрации.

Изобретение относится к области создания материалов для изготовления мембран, предназначенных для газоразделения, в частности к способу изготовления газоразделительной композиционной мембраны из политриметилсилилпропина для разделения углеводородов различной молекулярной массы и строения, разделения биогаза.
Изобретение относится к области разделения газовых смесей с помощью полупроницаемых мембран и может быть использовано в газовой, нефтяной, химической и других отраслях промышленности.
Наверх